Медицинская физика

IV Международный конкурс научно-исследовательских и творческих работ учащихся Старт в науке

Медицинская физика
Кононова Н.В. 11Транспортный колледж ГМУ им.адм. Ф.Ф.УшаковаСюсюка Е.Н. 1 Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF Введение

Человек ежедневно сталкивается с различными физическими явлениями и даже не придает этому значения. Даже функционирование организма зачастую подчиняется физическим законам.

Становление и развитие физики как науки исторически связано с развитием познаний в медицине. Существует множество подтверждений тому, что большое количество физических понятий и явлений появилось благодаря исследованиям и наблюдениям медиков.

Научные достижения в физике также находят применение в современной медицине. Поэтому я решила выявить, как физика и медицина связаны между собой.

Тема работы актуальна и не потеряет своей актуальности в будущем, а каждому человеку будет полезно знать об этом для собственного развития и расширения кругозора.

Итак, цель работы – показать взаимосвязь медицины и физики с помощью исторических и современных примеров.

Историческая связь физики с медициной.

Изначально между медициной и физикой была очень тесная связь, да и разделения на эти науки еще не было. О том, что такое теплота, задумались еще в древности. Закладка основ науки о тепле и изобретение первых термометров произошли благодаря Клавдию Галену, который ввел понятия «градус» и «температура».

Многие знаменитые личности, которые имели медицинское образование, прославились благодаря исследованиям физических явлений. Например, Томас Юнг, совместно с Френелем являющийся создателем волновой оптики, открыл один из дефектов зрения – дальтонизм, но дефект был назван в честь первого, у кого он обнаружился.

Немецкий врач и ученый Герман Гельмгольц сделал великие открытия не только в физике, но и в физиологии зрения, слуха, нервной и мышечной систем, а также пытался применить к физиологическим исследованиям знания по физике и математике. Жан-Луи Пуазейль изучал мощность сердца как насоса и исследовал законы движения крови в капиллярах и венах.

Обобщив результаты своих исследований, Пуазейль получил формулу, которая оказалась крайне важной для физики[1, 2]:

где p1 — p2 = Δp– перепад давления на концах капилляра, Па;

Q– объемный расход жидкости, м3/с;

R – радиус капилляра, м;

d – диаметр капилляра, м;

η–коэффициент динамической вязкости, Па*с;

l– длина капилляра, м.

Медицинская физика

Медицинская физика включает изучение систем и органов человека с точки зрения физики:

– скелет и мышцы – механика, теория упругости, теория устойчивости;

– глаз и зрение – оптика и электричество;

– слух – акустика и электрические импульсы;

– сердце и сосуды – гидравлика;

– мозг и нервная система – электричество;

– дыхательная система и обмен веществ – диффузия.

Цель этой науки – изучение систем профилактики и диагностики заболеваний, а также лечение больных с помощью методов и средств физики, математики и техники. Природа заболеваний и механизм выздоровления во многих случаях имеют биофизическое объяснение[3].

Первопроходцем в области медицинской физики был Леонардо да Винчи, проводивший исследования механики передвижения человеческого тела.

Медицинская физика по-настоящему стала утверждаться как самостоятельная наука и профессия только во второй половине ХХ в.– с наступлением атомной эры. В медицине стали широко применяться диагностические аппараты, основанные на излучении волн определенной длины, а также на рентгеновском и гамма-излучении, магнитных полях, лазерах и других физических явлениях.

Важнейшим в области медицинского обследования стало создание компьютерных томографов, позволивших, проводить широкий спектр медицинских исследований и сократить время, требуемое на их проведение[4].

Для того, чтобы показать, как физика связана с медициной в современном мире, рассмотрим несколько примеров [5].

Для исследования работы сердечно-сосудистой системы, а также выявления отклонений в ней на первом месте остается такой прибор, как тонометр. Конструкция прибора предельно проста: устройство, нагнетающее воздух, манжета, закрепляемая на руке пациента, манометр, который непосредственно и производит измерение, и механическое или электронное устройство, показывающее результаты измерения [6].

Измерение температуры уже нельзя представить без такого привычного для всех прибора, как термометр.

Принцип работы термометра основан на расширении жидкости при повышении температуры (жидкостный), расширении металла при повышении температуры (механический), изменении сопротивления проводника (электронный), изменению уровня светимости, спектра и иных оптических параметров (оптический), изменении давлении газа (газовый) [7, 8].

Ультразвуковой аппарат – первичный инструмент диагностики в медицине. Принцип работы прибора основывается на ультразвуке, который не воспринимается человеческим ухом. В обыденности работу аппарата можно описать так: в полость исследуемого объекта посылается ультразвук, при отражении которого создается эхо.

Значимость УЗИ-аппаратов невозможно переоценить, однако среди множества достоинств и плюсов есть и недостатки: обследовать методом ультразвука можно только внутренние органы брюшной полости, почек, щитовидной железы и малого таза [9].

Для того, чтобы выявить, к примеру, перелом кости или дефекты в строении зубов, применяется совсем другой вид приборов – рентген-аппараты.

Рентгеновские аппараты представляют собой приборы, применяющие рентгеновское излучение для получения информации о внутренних органах и костях для исследования на предмет патологий и их последующего устранения. Излучение из аппарата посылается исключительно по трубочкам-излучателям, а сам аппарат надежно защищен корпусом из свинца, хорошо поглощающего излучение.

Принцип работы основывается на подаче напряжения к пульту управления и главному трансформатору, откуда возросшее напряжение поступает к рентгеновской трубке, из которой и происходит излучение.

Рентгеновские лучи, проходя через кожные покровы, в разной степени поглощаются костной и мышечной тканью, вследствие чего на снимке будут отображаться ярко-белым –кости (наибольшее поглощение лучей происходит кальцием), оттенками серого цвета – соединительные ткани, жир, мышцы, жидкость, самым темным цветом – воздух (меньше всего поглощает излучение).

Специальное устройство преобразует излучение в видимое изображение, доступное для наблюдения. В некоторых случаях пациенту в исследуемый орган вводят контрастную субстанцию для большей точности диагностики [10].

Настоящий прорыв в диагностике произошел после создания томографов. Различают компьютерную и магнитно-резонансную томографию.

Компьютерная томография (КТ) – метод послойного исследования внутреннего строения органов, основан на измерениях и последующей компьютерной обработке разности ослабления рентгеновского излучения различными тканями[11].

Обычно процедура компьютерной томографии назначается для уточнения диагноза после предварительного осмотра и для установления точного местоположения проблемы.

Компьютерный томограф так же является рентгеновским аппаратом, однако его преимущество над последним в том, что снимки делаются под различными углами вследствие вращения рамки томографа вокруг тела пациента, а компьютерная обработка позволяет различать ткани, отличающиеся друг от друга на 0,5%, что повышает точность диагностики в 1000 раз. При КТ в подробностях различимы скелет и ткани легких, а также свежие кровотечения, что позволяет исследовать больных с травмами головы, брюшной полости, грудной клетки, а также выявить инсульт на ранней стадии.

Магнитно-резонансная томография основана на взаимодействии сильного магнитного поля устройства и атомов водорода в организме. Аппарат посылает электромагнитный сигнал определенной частоты и улавливает сигнал атомов водорода, имеющих такую же частоту. Ответный сигнал регистрируется устройством.

Разные ткани организма имеют разное количество атомов водорода, соответственно сигнал имеет различные характеристики. Томограф распознает сигнал и преобразует его в изображение.

Проводится МРТ точно так же, как КТ, но пациент находится в тоннеле прибора практически полностью, поэтому главным ограничением в применении данного метода является клаустрофобия.

Еще одно отличие от КТ – МРТ проводится без использования рентгеновского излучения, в процессе диагностики используется только магнит, который не оказывает вредного воздействия на человека, но достаточных оснований полагать, что метод полностью безопасен, пока нет, так как он достаточно молод и до конца не изучен [12].

Физиотерапия – совокупность методов лечения с помощью физических факторов (электрический ток, магнитное излучение, воздух, свет и др.).

Электрофорез – воздействие на организм постоянного электрического тока в сочетании с введением через кожу или слизистые оболочки разнообразных препаратов. Принцип действия основан на действии электрического поля, вызывающего разложение лекарственного препарата на заряженные частицы, движущиеся к электродам [13].

    Бытовые аппараты для диагностики

Благодаря достижениям физики в быту мы используем множество различных медицинских приборов, которые позволяют не посещать врача без особой надобности.

К примеру, бытовой глюкометр позволяет контролировать уровень сахара в крови, не выходя из дома и не обращаясь в больницу. Появление таких приборов сильно облегчило жизнь людям, страдающим сахарным диабетом, ведь им необходимо регулярно проверять уровень сахара в крови, а часто ходить в медицинские лаборатории не представлялось возможным.

Бытовые тонометры мало отличаются от механических, используемых в медицинских учреждениях, однако сильно облегчают задачу, так как электронные и полуэлектронные тонометры не требуют фонендоскопа для измерения давления.

Заключение

Таким образом, в работе показана тесная взаимосвязь физики и медицины. Достижения в области физических и технических изысканий находят широкое применение в медицинских исследованиях, позволяют создавать новые, более точные и надежные приборы и аппараты, которые спасут множество жизней.

Анализ исторических фактов показывает, что одним из двигателей прогресса в физике на протяжении многих веков является медицина, в древности и до XVIII века физика и медицина были неразрывны друг от друга и входили в единую область знаний – естествознание. Врачи-мыслители древности и медики средневековья открыли и описали явления, которые положили начало многим наукам, а самыми крупными из них стали медицина и физика.

Новые болезни требуют новых методов индикации, диагностики и лечения, что подталкивает ученых физиков и связанных с физикой специалистов разрабатывать, создавать и совершенствовать приборы для нужд медицины.

Таким образом, знание того, что две науки развивались совместно и под влиянием нужд обеих, необходимо не только тем, кто с этими науками связан, но и всем, кто хочет расширить свой кругозор. И каждый человек может стать исторической личностью, внеся свой вклад в развитие знаний.

Список использованной литературы

1Смолова А. А. Значение физики в медицине / А. А. Смолова, И. В. Щербакова // Студенческая наука XXI века: материалы XII Междунар. студенч. науч.-практ. конф. (Чебоксары, 25 янв. 2017 г.) / — Чебоксары: ЦНС «Интерактив плюс», 2017. — № 1 (12). — С. 55–57.

2Петренко Ю. Нужна ли физика врачу? / Ю. Петренко // Наука и жизнь.– №3.– 2003.

3Подколзина В. А. Медицинская физика/ В. А. Подколзина – Москва: ЭКСМО, 2007.

4Медицинская физика. Краткая история / – Режим доступа: https://cribs.me/meditsinskaya-fizika/meditsinskaya-fizika-kratkaya-istoriya

5Подлесникова А. Физика в медицине и её роль / А. Подлесникова // – 2016. – Режим доступа: http://.ru/article/242003/fizika-v-meditsine-i-ee-rol

6Тонометр. Принцип работы / http://krasotaizdorovie.ru/articles/tonometr-princip-raboty.php

7Термометр/Режим доступа: http://dic.academic.ru/dic.nsf/ntes/4776/ТЕРМОМЕТР

8Термометр / – 2016. – Режим доступа: https://ru.wikipedia.org/wiki/Термометр

9УЗИ-аппараты. Принцип работы / Режим доступа: http://www.baltmedical.ru/uzi-apparaty.htm

10Устройство и принцип работы рентгеновского аппарата / – Режим доступа: http://www.stormoff.ru/articles_565_139.html

11Компьютерная томография / – 2017. – Режим доступа: https://ru.wikipedia.org/wiki/Компьютерная_томография

12Аманова Е. Что может томография и кому она нужна / Е. Аманова // АиФ. Здоровье. –№ 15. – 2009. – Режим доступа: http://www.aif.ru/health/life/10461

13Электрофорез/Режим доступа: http://www.diagnos.ru/procedures/manipulation/elektroforez_lekarstvennyj

Источник: https://school-science.ru/4/11/286

Медицинская физика

Медицинская физика

Физика — это наука, исследующая физическую форму движения материи. Условно физическое движение разделяют на

  • механическое;
  • молекулярно-тепловое;
  • электромагнитное;
  • атомное;
  • внутриядерное.

Физика, как учебная дисциплина, представлена именно этими разделами.

Физика применяет разные методы исследования, но в своей основе они имеют наблюдение, размышление и опыт (эксперимент).

Наблюдения дают основания для создания теорий, формулировок законов и выдвижения гипотез. Теории проверяют практикой. Практика же позволяет корректировать теории, законы.

Разные формы движения материи находятся в тесной взаимосвязи и взаимозависимости. Это вызывает к жизни новые науки, которые находятся на стыке старых: биофизика, астрофизика и другие. В новых науках применяются достижения и методы, полученные ранее.

Взаимосвязь физики и медицины. Биофизика

В настоящее время произошло многогранное проникновение физических знаний, методов и приборов в медицину.

В организме человека происходят сложные процессы, однако, часть из них можно описывать при помощи физических моделей. Так процесс кровообращения можно уподобить гидродинамическому течению жидкости. Аэродинамика помогает описать дыхание человека, которое связано с газовым движением.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

В организме человека, наряду с макропроцессами, существуют молекулярные процессы. Эти процессы определяют поведение макроскопических биосистем. Исследование и понимание физической сущности микропроцессов дает основу для определения состояния организма человека, влияния лекарств, природы ряда болезней.

Определение 1

Биофизика, самостоятельная наука, образованная на стыке физики и биологии. Она изучает физические и физико-химические процессы в живых организмах, ультраструктуру биосистем от клетки до организма в целом.

В лечебных целях еще в древние времена применяли такие физические факторы как тепло и холод.

Первым медицинским физиком можно считать Леонардо да Винчи, который исследовал механику движения тела человека.

Самым тесным образом медицина и физика стали переплетаться с конца XVIII – начала XIX веков, когда были отрыты основные законы электродинамики.

Физические методы диагностики и изучения биосистем

Законы, принципы и идеи физики лежат в основе методик диагностирования и изучения заболеваний. Большая часть медицинских приборов являются по своей сути физическими приборами:

  1. Давление крови, являющееся механической величиной, применяется как маркер большого числа заболеваний.
  2. Всем известный термометр, работает на основе процесса теплового расширения ртути.
  3. Процедура электрокардиографии в своей основе имеет запись биологических потенциалов, которые возникают в живых организмах. Данная запись отображает работу сердца.
  4. Микроскоп уже многие десятилетия используют при проведении медицинских исследований.
  5. Разработки в области оптоволоконной оптики позволили создать приборы, при помощи которых осуществляют исследования внутренних полостей организма.
  6. Спектральный анализ применяют в гигиене, биологии, фармакологии и судебной медицине.
  7. Диагностика с помощью рентгена стала возможной благодаря разработкам в области атомной физики.

Физические явления, применяемые в лечении

Значимое место в системе лечения занимают методы, использующие физические факторы. Приведем некоторые из них:

  • Гипсовую повязку накладывают при переломах. Она служит механическим фиксатором поврежденного органа.
  • Применение грелки для лечения основано на тепловом воздействии.
  • Физиотерапия использует электрическое и электромагнитное действия тока.
  • Для лечения применяют видимый и ультрафиолетовый свет.
  • Раковые опухоли облучают рентгеновскими и гамма лучами.

Физические свойства материалов и биосистем

Для того чтобы иметь возможность использовать в медицине инструменты, протезы, перевязочные материалы, электроды и т.п.

необходимо обладать сведениями о физических свойствах веществ из которых они сделаны. Так для создания протезов (зубов, клапанов, сосудов и т.д.

) необходимы знания о механической прочности, поведении в отношении нагрузок, теплопроводности, электропроводности и других физических свойствах.

В некоторых случаях необходимы знания о физических свойствах биосистем с целью оценивания их способности к противостоянию внешним воздействиям.

Исследуя изменения физических свойств живых организмов, проводят диагностику некоторых заболеваний.

Окружающая среда и ее физические характеристики

Функционирование живого организма не возможно без взаимодействия с окружающей средой. Организм очень чутко реагирует на изменение таких физических параметров как температура воздуха, влажность, давление и прочее. Врач должен быть способен оценить физические свойства и характеристики внешней среды.

Воздействие внешней среды можно не только учитывать, но и использовать как метод лечения, что применяется в климатотерапии и баротерапии.

Определение 2

Медицинской физикой следует считать комплекс разделов прикладной физики, биофизики, рассматривающих законы физики, физические процессы и явления, их характеристики, физические модели и уравнения в применении к медицинским задачам.

Знания из области физики способствуют формированию материалистического взгляда на живой организм и процессы, которые в нем происходят.

В практической работе медицинский работник должен уметь работать с количественными показателями, например, такими как температура тела, артериальное давление, доза лекарства и т.д., это означает, что следует знать единицы их измерения и представления, их соотношения. Иметь понимание о точности проводимых измерений. Врач должен представлять каковы способы и методы обработки информации.

Общество, человек, компьютер – это системы, способные принимать и перерабатывать информацию. Такие системы являются предметом исследования кибернетики.

Медицина в настоящее время не может функционировать без разнообразной аппаратуры. Эти приборы основываются на законах физики. В курсе медицинской физики изучают устройство и принципы работы медицинских приборов.

Источник: https://spravochnick.ru/fizika/medicinskaya_fizika/

Кто такой медицинский физик и как им стать

Медицинская физика

В России строится Федеральная сеть центров ядерной медицины, но для их обслуживания нужны квалифицированные специалисты. В современной диагностике и лечении онкологических и других заболеваний не обойтись без медицинских физиков.

В России зарегистрировано более 3,5 млн онкологических больных. Каждый год заболевает еще полмиллиона человек, сто тысяч из них не доживает до конца года. Такие методы лечения, как хирургия, химиотерапия, традиционная лучевая терапия, недостаточно эффективны и дороги.

Чем раньше обнаружить заболевание, тем выше шансы успешно его вылечить. Для распространения ранней диагностики нужна скрининговая программа для различных слоев населения и так называемых групп риска. Обнаружить доклинические формы злокачественных опухолей до появления опасных симптомов могут ПЭТ- и КТ-исследования, а лечить – протонная терапия и другие высокотехнологичные методы.

Россия постепенно идет по этому пути: в стране открываются новые центры ядерной медицины, в октябре Правительство России утвердило «дорожную карту» их развития (Распоряжение от 23 октября 2015 года №2144-р), в вузах готовят новых специалистов. Кто они?

Автоматизированный модуль для производства радиофармпрепаратов (фото: «ПЭТ Технолоджи»)

УЗИ (ультразвуковое исследование), МРТ (магнитно-резонансную томографию) и КТ (компьютерную томографию) используют, чтобы получить общее представление о новообразовании.

ПЭТ (позитронно-эмиссионная томография) – другое дело: она показывает опухоль на уровне обменных процессов и крошечные метастазы вплоть до атомов.

Сегодня это обязательный этап диагностики и лечения онкологических заболеваний, самый информативный и объективный метод, применяемый уже не один десяток лет и не имеющий альтернатив.

Перед исследованием пациенту вводят радиофармпрепарат (РФП). Радионуклидные препараты накапливаются в опухолевых тканях и наглядно показывают, что происходит внутри организма, посредством ПЭТ/КТ-сканера. Чтобы выполнить такое исследование, медицинский центр должны обладать мощными сканерами и компьютерным оборудованием для диагностики.

К тому же для пациента надо изготовить или доставить РФП. Для производства радиофармпрепаратов нужен циклотрон, чтобы получить изотопы, оборудование для синтеза РФП и лаборатория для контроля их качества. Другими словами, внедрение методов ядерной медицины требует строительства крупных центров и подготовки высококвалифицированных специалистов.

 

Протонная терапия

Протонная терапия – новый метод лучевой терапии. Разогнанные до огромной скорости протоны (положительно заряженные аналоги электронов) в два-три раза снижают лучевую нагрузку на окружающую опухоль здоровую ткань по сравнению с гамма-лучами, тем самым значительно уменьшая число побочных эффектов и осложнений. 

Более того, протонный пучок можно «останавливать» в нужном месте: за границей опухоли его интенсивность резко падает, а значит, ее можно облучать большими дозами при меньшем повреждении нормальных тканей и времени облучения. Протонный луч добирается до глубоко расположенных опухолей – это особенно полезно в офтальмологии. Минус метода – дороговизна: для разгона протонов надо строить ускоритель.

Атомная медицина

Успехи атомной и ядерной физики в 60-е годы, выделение стабильных изотопов привели в медицину новые технологии. В результате исследований, проведенных в ядерных физических центрах 60-х годов, были построены мощные медицинские центры. Первый клинический центр протонной лучевой терапии появился в 1990 году в Лома Линда (Калифорния, США). 

Виала с радиофармпрепаратом (фото: «ПЭТ Технолоджи»)

В СССР история протонной терапии началась в конце 60-х – начале 70-х. В Лаборатории ядерных проблем ОИЯИ исследования начались в 1967 году под руководством.

Сегодня в Дубне работает Медико-технический комплекс (МТК), количество его пациентов достигает 100 человек в год. В ИТЭФ с 1969 года с помощью протонного синхротрона прошли лечение больше трех тысяч человек.

В Гатчине (ПИЯФ) медицинский комплекс протонной терапии работает с 1975 года.

Сегодня в России появляются специализированные медицинские центры ядерной медицины. Уже в 2017 году Федеральная сеть таких центров должна охватить 16 регионов. За последний год открыты пять центров, в которых проводят сверхточную диагностику методами ПЭТ/КТ: Липецк, Тамбов, Орел, Курск и Уфа.

На очереди – ПЭТ-центр на острове Русский, отделение ПЭТ-диагностики в Брянске, затем центры в Новосибирске, Самаре, Екатеринбурге, Калуге, Оренбурге, Перми, Ижевске.

В конце 2017 года откроется самый крупный в Европе высокотехнологичный центр медицинской радиологии в городе Димитровград Ульяновской области – первые пуски его ускорителя начнутся в 2016-м.

Для ПЭТ-диагностики нужны радиофармпрепараты, поэтому медицинские центры строятся неподалеку от их производства. Центры в Тамбове, Курске и Липецке работают с РФП, которые производят в в городе Елец Липецкой области. 

Физики от медицины

Сегодня большинство медицинских физиков работают в сотрудничестве с онкологами и занимаются вопросами лучевой диагностики и терапии. Хотя еще во времена СССР физики-ядерщики и инженеры работали в онкологических диспансерах, а с 1993 года существует Ассоциация медицинских физиков России, официальный статус специальность «медицинский физик» получила только в 2000 году.

К 2016 году разработали программы обучения, сформулировали основные требования к профессии.

Медицинский физик – это специалист с высшим образованием в области физики, математики, механики, электроники или электротехники, который работает в сотрудничестве с медиками.

Соответственно, он должен разбираться не только в ядерной физике, но и в целом сплаве наук, на стыке которых работает, а главное – в медицинских приложениях своей профессии.

Медицинский физик – главный помощник врача при проведении лучевой терапии.

Он должен обладать навыками работы с крайне сложным оборудованием; уметь рассчитывать дозы облучения для диагностики и лечения; обеспечивать радиационную защиту пациента, всего персонала и окружающей среды.

Кроме того, он должен обладать необходимой психологической подготовкой, которая позволит работать в том числе с тяжелобольными людьми.

Куда пойти учиться

1. МГУ имени М.В. Ломоносова. Физический факультет. Кафедра медицинской физики

Первые три года студенты кроме общих курсов по физике и математике получают дополнительное образование по биофизике и основам биологии и медицины. Студенты смогут работать на установках, осваивая физические методы медицинской практики.

Участие кафедры предполагается в новом Медицинском центре МГУ. Налаживаются связи кафедры с ведущими медицинскими институтами и центрами, в частности с МНИОИ им П.А.

Герцена, где студенты будут проходить преддипломную практику и выполнять дипломные работы.

Форма обучения: очная

2. НИЯУ МИФИ. Факультет экспериментальной и теоретической физики. Кафедра №35 «Медицинская физика»

На кафедре студенты получат фундаментальную подготовку в области физики, теоретической физики, высшей математики, вычислительной техники, электроники и современных методов визуализации изображений.

Совместно с ведущими медицинскими и научно-исследовательскими центрами страны сотрудники и студенты кафедры проводят исследования в области ЯМР-диагностики, лучевой терапии, разрабатывают аппаратуру и методики для лазерной медицинской диагностики, ведут работы по созданию отечественного позитронного томографа и современных локаторов раковых опухолей.

Форма обучения: очная. Степень: бакалавр + магистр

3. Санкт-Петербургский политехнический университет Петра Великого. Институт физики, нанотехнологий и телекоммуникаций 

Программа бакалавров и магистров по направлению 010700 – «Физика» (магистерские программы подготовки: «Физика атомного ядра и элементарных частиц» и «Медицинская ядерная физика») – включает подготовку в области экспериментальной ядерной физики и физики элементарных частиц, а также в области применения ядерно-физических методов в науке, технике и медицине как в теории, так и на практике. В ПИЯФ и НИИЭФА кафедра имеет филиалы, где организовано индивидуальное обучение студентов старших курсов на уникальном научном оборудовании и под руководством ведущих научных сотрудников этих институтов.

Форма обучения: очная. Степень: бакалавр + магистр

4. Обнинский институт атомной энергетики (ИАТЭ), НИЯУ МИФИ. Факультет естественных наук. Кафедра радионуклидной медицины

Кафедра готовит специалистов для высокотехнологичных отраслей ядерной медицины – радиоизотопной диагностики и терапии различных заболеваний у человека. 

Форма обучения: очная. Степень: бакалавр + магистр

5. Химический факультет МГУ. Кафедра радиохимии совместно с «ПЭТ-Технолоджи» и GE Healthcare

Программа повышения квалификации в области позитронно-эмиссионной и компьютерной томографии. Предлагает обучение по дисциплинам «Радиохимия для сотрудников центров ПЭТ/КТ», «Радиология» и «Медицинская физика для сотрудников центров ПЭТ/КТ».

По материалам портала «Чердак: наука, технологии, будущее»

Источник: https://intalent.pro/article/kto-takoy-medicinskiy-fizik-i-kak-im-stat.html

Медицинская физикаТекст

Медицинская физика

Медицинская физика – это наука о системе, которая состоит из физических приборов и излучений, лечебно-диагностических аппаратов и технологий.

Цель медицинской физики – изучение этих систем профилактики и диагностики заболеваний, а также лечение больных с помощью методов и средств физики, математики и техники. Природа заболеваний и механизм выздоровления во многих случаях имеют биофизическое объяснение.

Медицинские физики непосредственно участвуют в лечебно-диагностическом процессе, совмещая физико-медицинские знания, разделяя с врачом ответственность за пациента.

Развитие медицины и физики всегда были тесно переплетены между собой. Еще в глубокой древности медицина использовала в лечебных целях физические факторы, такие как тепло, холод, звук, свет, различные механические воздействия (Гиппократ, Авиценна и др.).

Первым медицинским физиком был Леонардо да Винчи (пять столетий назад), который проводил исследования механики передвижения человеческого тела. Наиболее плодотворно медицина и физика стали взаимодействовать с конца XVIII – начала XIX вв., когда были открыты электричество и электромагнитные волны, т. е. с наступлением эры электричества.

Назовем несколько имен великих ученых, сделавших важнейшие открытия в разные эпохи.

Конец XIX – середина ХХ вв. связаны с открытием рентгеновских лучей, радиоактивности, теорий строения атома, электромагнитных излучений. Эти открытия связаны с именами В. К. Рентгена, А. Беккереля,

М. Складовской-Кюри, Д. Томсона, М. Планка, Н. Бора, А. Эйнштейна, Э. Резерфорда. Медицинская физика по-настоящему стала утверждаться как самостоятельная наука и профессия только во второй половине ХХ в. – с наступлением атомной эры.

В медицине стали широко применяться радиодиагностические гамма-аппараты, электронные и протоновые ускорители, радиодиагностические гамма-камеры, рентгеновские компьютерные томографы и другие, гипертермия и магнитотерапия, лазерные, ультразвуковые и другие медико-физические технологии и приборы.

Медицинская физика имеет много разделов и названий: медицинская радиационная физика, клиническая физика, онкологическая физика, терапевтическая и диагностическая физика.

Самым важным событием в области медицинского обследования можно считать создание компьютерных томографов, которые расширили исследования практически всех органов и систем человеческого организма.

ОКТ были установлены в клиниках всего мира, и большое количество физиков, инженеров и врачей работало в области совершенствования техники и методов доведения ее практически до пределов возможного.

Развитие радионуклидной диагностики представляет собой сочетание методов радиофармацевтики и физических методов регистрации ионизирующих излучений. Позитронная эмиссионная томография-визуализация была изобретена в 1951 г. и опубликована в работе Л. Ренна.

2. Основные проблемы и понятия метрологии

Метрологией называют науку об измерениях, методах и средствах обеспечения их единства, способах достижения требуемой точности. Измерением называют нахождение значения физической величины опытным путем с помощью технических средств. Измерения позволяют установить закономерности природы и являются элементом познания окружающего нас мира.

Различают измерения прямые, при которых результат получается непосредственно из измерения самой величины (например, измерение температуры тела медицинским термометром, измерение длины предмета линейкой), и косвенные, при которых искомое значение величины находят по известной зависимости между ней и непосредственно измеряемыми величинами (например, определение массы тела при взвешивании с учетом выталкивающей силы, определенной вязкостью жидкости по скорости падения в ней шарика). Технические средства для производства измерений могут быть разных типов. Наиболее известными являются приборы, в которых измерительная информация представляется в форме, доступной для непосредственного восприятия (например, температура представлена в термометре длиной столбика ртути, сила тока – показанием стрелки амперметра или цифровым значением).

Единицей физической величины называют физическую величину, принятую по соглашению в качестве основы для количественной оценки соответствующей физической величины.

Для выражения уровня звукового давления, уровня интенсивности звука, усиления электрического сигнала, выражения частотного интервала и иного удобнее использовать логарифм относительной величины (на– и более распространен десятичный логарифм):

lg = а2/а1

где а1 и а2 – одноименные физические величины.

Единицей логарифмической величины является бел (Б):

1Б = lg=а2/аi,

при а2 = 10а,

если а – энергетическая величина (мощность, интенсивность, энергия и т. п.), или

если а – силовая величина (сила, механическое напряжение, давление, напряженность электрического поля и т. п.).

Достаточно распространена дольная единицы – децибел (дБ):

1 дБ = 0,1Б.

1дБ соответствует соотношению энергетических величин а2 = 1,26а:

3. Медицинская метрология и ее специфика

Технические устройства, используемые в медицине, называют обобщенным термином «медицинская техника». Большая часть медицинской техники относится к медицинской аппаратуре, которая в свою очередь подразделяется на медицинские приборы и медицинские аппараты.

Медицинским прибором принято считать техническое устройство, предназначенное для диагностических или лечебных измерений (медицинский термометр, сфигмоманометр, электрокардиограф и др.).

Медицинский аппарат – техническое устройство, позволяющее создавать энергетическое воздействие терапевтического, хирургического или бактерицидного свойства, а также обеспечивать в медицинских целях определенный состав различных субстанций (аппарат УВЧ-терапии, электрохирургии, искусственной почки, ушной протез и др.).

Метрологические требования к медицинским приборам достаточно очевидны. Многие медицинские аппараты призваны оказывать дозирующее энергетическое воздействие на организм, поэтому они и заслуживают внимания метрологической службы. Измерения в медицине достаточно специфичны, поэтому в метрологии выделено отдельное направление – медицинская метрология.

Рассматривая некоторые проблемы, характерные для медицинской метрологии и частично для медицинского приборостроения, следует отметить: в настоящее время медицинские измерения в большинстве случаев проводит медицинский персонал (врач, медсестра), не являющийся технически подготовленным. Поэтому целесообразно создавать медицинские приборы, градуированные в единицах физических величин, значения которых являются конечной медицинской измерительной информацией (прямые измерения).

Желательно, чтобы времени измерения вплоть до получения полезного результата тратилось как можно меньше, а информация была как можно полнее. Этим требованиям удовлетворяют вычислительные машины.

При метрологическом нормировании медицинского прибора важно учитывать медицинские показания. Врач должен определить, с какой точностью достаточно представить результаты, чтобы можно было сделать диагностический вывод.

Многие медицинские приборы выдают информацию на регистрирующем устройстве (например, электрокардиографе), поэтому следует учитывать погрешности, характерные для этой формы записи.

Одна из проблем – термологическая. Согласно требованиям метрологии в названии измерительного прибора должна быть указана физическая величина или единица (амперметр, вольтметр, частотомер и др.).

Названия для медицинских приборов не отвечают этому принципу (электрокардиограф, фонокардиограф, реограф и др.). Так, электрокардиограф следовало бы назвать милливольтметром с регистрацией показаний.

В ряде медицинских измерений может быть недостаточной информация о связи между непосредственно измеряемой физической величиной и соответствующими медико-биологическими параметрами. Так, например, при клиническом (бескровном) методе измерения давления крови допускается, что давление воздуха внутри манжеты приблизительно равно давлению крови в плечевой артерии.

Источник: https://www.litres.ru/vera-podkolzina/medicinskaya-fizika/chitat-onlayn/

Booksm
Добавить комментарий