Линейный тип алгоритмов

Типы алгоритмов

Линейный тип алгоритмов

Определение 1

Алгоритм — это некоторый набор инструкций, описание действий исполнителя для достижения поставленной цели/результата за определенное количество так называемых шагов (итераций).

Понятие алгоритма появилось еще в IX веке нашей эры и произошло от имени его создателя, известного математика Мухаммеда ибн Муса ал-Хорезми (Alhorithmi). Наука, занимающаяся формированием и созданием алгоритмов, называется алгоритмикой.

Классификация алгоритмов

Как правило, основой для классификации алгоритмов является порядок выполнения команд (шагов). На основании данного признака специалисты в данной области выделяют три основных типа алгоритмов:

  • Линейные алгоритмы;
  • Алгоритмы с разветвлением;
  • Циклические алгоритмы.

Каждый из типов алгоритмов имеет свои особенности, которые будут рассмотрены далее.

Линейные алгоритмы

Линейным алгоритмом называется алгоритм, в котором последовательность записанных команд (действий) осуществляется строго согласно порядка их записи без каких-либо изменений. Как правило, такой алгоритм составляется из нескольких базовых структур следования.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Простым примером линейного алгоритма может выступить алгоритм утренних действия:

  1. Проснуться;
  2. Встать с постели;
  3. Обуть тапочки;
  4. Зайти в ванную;
  5. Почистить зубы;
  6. Вернуться в комнату;
  7. Застелить постель;
  8. Одеться;
  9. Приготовить завтрак;
  10. Позавтракать.

Т. е. действия выполнятся последовательно, одно за другим. Пример записи линейного алгоритма представлен на рисунке 1.

Рисунок 1. Линейный алгоритм. Автор24 — интернет-биржа студенческих работ

Для составления линейного алгоритма необходимо:

  • Определить тип и присвоить имена переменных;
  • Определить тип окончательного результата, присвоить имя этой переменной;
  • Определить и обозначить связь между исходными переменными и переменной результата;
  • При необходимости ввода промежуточных переменных, определить их тип, присвоить имена, обозначить связь с исходными переменными и переменной результата;
  • Записать алгоритм, который отражает ввод данных, вычисление, вывод окончательного результата;
  • Протестировать полученный алгоритм на предмет его корректного функционирования.

Замечание 1

Исключительно линейные алгоритмы применяются достаточно редко, обычно при расчете простых формул и решения простейших задач.

Алгоритмы с разветвлением

Как отмечено ранее, ситуации, когда применение линейных алгоритмов целесообразно, встречаются достаточно редко. Они применяются, как правило, для элементарных вычислений, гораздо чаще возникают задачи, когда необходимо принятие решения в зависимости от сложившихся обстоятельств (условий). Для решения таких задач и используются алгоритмы с ветвлением.

Разветвляющиеся алгоритмы представляют собой алгоритм, последовательность выполнения команд которого находится в зависимости от соответствия заявленному условию. Команда «ветвления» относится к структурным командам. Выполнение такой команды всегда происходит в несколько шагов: проверка заданного условия и дальнейшее исполнение команд по одной из ветвей: «да» или «нет».

Простым примером разветвляющегося алгоритма может выступить алгоритм выбора одежды перед выходом на улицу:

  1. Есть ли на улице дождь?
  2. Если дождь идет, то необходимо надеть плащ.
  3. Если дождя нет, холодно на улице?
  4. Если холодно, надеть джемпер;
  5. Если не холодно, надеть футболку.

Замечание 2

В структуре такого алгоритма может быть любое количество условий. Таким образом, сначала проверяется выполнение логического выражения (Есть ли на улице дождь?), затем выполняется одно из условий в соответствии с выбором ответа.

Пример записи разветвляющегося алгоритма представлен на рисунке 2.

Рисунок 2. Автор24 — интернет-биржа студенческих работ

Алгоритм с разветвлением

Для составления разветвляющегося алгоритма необходимо:

  • Установить какие могут быть варианты операций и их количество;
  • Количество условных операторов (которые и отражают заданное условие) должно быть на одну единицу меньше, чем количество существующих вариантов;
  • Понять, при соответствии каким из условий будет реализован каждый их установленных вариантов;
  • Если в алгоритме существует больше двух условий, то необходимо задать и последовательность проверки данных условий;
  • Записать алгоритм, который отражает ввод данных, вычисление, вывод окончательного результата;
  • Протестировать полученный алгоритм на предмет его корректного функционирования.

Стоит отметить, разветвляющиеся алгоритмы могут быть как полными, так и неполными. Пример таких алгоритмов представлен на рисунках 3-4.

Рисунок 3. Алгоритм с полным разветвлением. Автор24 — интернет-биржа студенческих работ

Рисунок 4. Алгоритм с неполным разветвлением. Автор24 — интернет-биржа студенческих работ

Разветвляющие алгоритмы встречаются чаще линейных, но не являются самыми популярными и используемыми в сфере программирования.

Циклические алгоритмы

Чаще всего автоматизируют процессы, выполнение которых необходимо большое количество раз. Поэтому для целей автоматизации наиболее часто используют циклические алгоритмы. Такие алгоритмы используют для решения задач, в которых действия необходимо повторить несколько раз, до тех пор, пока соблюдается заданное ранее условие (выполнение цикла).

Циклические алгоритмы представляют собой алгоритмы, которые обеспечивают выполнение заранее заданного цикла.

Простым примером циклического алгоритма может выступить необходимость посещений школы или университета в будние дни. Данный цикл прекращается при выполнении условия наступления выходных или праздничных дней.

Пример записи циклического алгоритма представлен на рисунке 5.

Рисунок 5. Циклический алгоритм. Автор24 — интернет-биржа студенческих работ

Для составления циклического алгоритма необходимо:

  • Установить, какая из последовательностей операций должна быть в основе цикла;
  • Определить вводные данные о количестве повторений тела цикла до начала цикла. Исходя из этих данных, определить какой из видов циклического цикла наиболее целесообразно использовать: цикл с параметром, постусловием или предусловием;
  • Установить условие окончания выполнения заданного цикла;
  • Установить вводные переменные;
  • Записать алгоритм, который отражает ввод данных, вычисление, вывод окончательного результата;
  • Протестировать полученный алгоритм на предмет его корректного функционирования.

Источник: https://spravochnick.ru/informatika/algoritmizaciya/tipy_algoritmov/

Типы алгоритмов: линейные, разветвляющиеся, циклические – методическая разработка для учителей, Елеусизова Айнаш Досымхановна

Линейный тип алгоритмов

Цель урока: повышение интереса к изучению предмета; воспитание навыка быстрого мышления; развитие творческой активности учащихся; развитие познавательных интересов.
Задачи урока: 1. Образовательные: – Закрепить с учащимися понятия алгоритма, исполнителя, системы команд исполнителя, способы представления алгоритмов. – Познакомить учащихся с типами алгоритмов: линейным, разветвляющимся, циклическим. – Научить представлению алгоритмов в виде блок-схем. 2. Развивающие: – Активизировать познавательную активность учащихся через мультимедийные средства обучения. – Развивать образное, критическое, дивергентное мышление. 3. Воспитательные: – Повышение мотивации учащихся на уроке. – Достижение сознательного уровня усвоения материала учащимися. – Формирование чувства коллективизма и здорового соперничества.– Формирование  алгоритмического мышления.
Требования к знаниям и умениям: – Знать типы алгоритмов. – Знать понятия: линейный, разветвляющийся, циклический алгоритмы.– Уметь применять полученные знания при выполнении практических заданий.
Тип урока: комбинированный.
Технология: формирование коммуникативной компетенции.
Методы: – частично-поисковый, практический; – информационный (словесный);– наглядно-иллюстративный.
Оборудование:Флипчарт по теме (приложение 1), компьютеры, ресурс www.bilimland.kz, технологическая карта ученика (приложение 2), разноуровневые карточки (приложение 3), локальная сеть NetOp.

 

I.Организационный момент. 1. Приветствие ребят. Здравствуйте, ребята! Садитесь! Какое у вас настроение? Если хорошее — улыбнитесь всем! Если нет — посмотрите друг на друга и улыбнитесь! Начнем урок! Я представила вам алгоритм в словесной форме. Посмотрите на доску. Этот же алгоритм изображен графически.

Сегодня на уроке мы научимся с вами представлять типы алгоритмов с помощью блок – схем (страница флипчарта 1). Эпиграфом к нашему уроку будут слова знаменитого французского ученого Гюстава Гийома “Дорогу осилит идущий, а информатику мыслящий”. 2. Объявление целей урока. II. Актуализация знаний учащихся Но прежде чем приступим к изучению нового материала.

Мы должны вспомнить, что изучали на прошлом уроке. 1. Проверка домашнего задания. Проверить кроссворды, решенные учениками дома. Ответы: 1. 1. графический 2. конечность 3. информация 4. исполнитель 5. алгоритм 6. программный 7. план 8. компьютер 9. инструмент 10. рисунок 11. шаг

2. Работа с ресурсом https://bilimland.

kz/ru/courses/informatika-ru/6-klass/lesson/ponyatie-algoritma-i-ispolnitelya

“Повторение – мать учения” так говорили великие. Учитель объясняет алгоритм выполнения упражнений 1-3. Дети на местах работают с ресурсом.

III. Изучение нового материала.

1. Теоретическая часть.

Алгоритмы бывают трех типов: (страница флипчарта 7) -линейный -разветвляющийся -циклический Линейные алгоритмы – алгоритм, в котором команды выполняются в порядке их записи, т. е. последовательно друг за другом. (страница флипчарта 8) Пример 1 (страница флипчарта 9). Сказка «Курочка Ряба» Алгоритма представлен в виде ссылки на презентацию Разветвляющийся алгоритм — алгоритм, в котором в зависимости от выполнения некоторого условия совершается либо одна, либо другая последовательность действий (страница флипчарта 10) В словесном описании разветвляющегося алгоритма используются слова «если», «то», «иначе». Полная форма: «если выполняется условие, то …, иначе …» . Действия предусмотрены и при выполнении условия, и при его невыполнении. (страница флипчарта 11) Неполная форма: «если выполняется условие, то …». Действия предусмотрены только при выполнении условия. При невыполнении условия. Пример 2. (страница флипчарта 12-13) Если пошёл дождь, то откройте зонт, иначе – зонт положите в сумку (полная форма разветвляющегося алгоритма); Если пошёл дождь, то откройте зонт (неполная форма разветвляющегося алгоритма).и какие действия не выполняются. Пример 3. (страница флипчарта 12-13) “Купить мороженое” .
Циклический алгоритм- алгоритм, в котором действия повторяются конечное число раз. (страница флипчарта 14) Пример 4. (страница флипчарта 15.) Алгоритм «Наполнение». Начало 1. Пока ведро неполное, повторять: 2. Налить в ведро кружку воды. Конец Проверить, перетащив рисунок на свободное место. Тренинг-задача № 3 (страница флипчарта 20). Мальчик учит наизусть четверостишие, заданное по литературе. Он один раз прочитывает четверостишие и пытается воспроизвести его по памяти. Так он будет делать до тех пор, пока не расскажет четверостишие без единой ошибки. Составить действия мальчика в виде блок-схемы. Проверить, перетащив рисунок на свободное место.

3. Физкультминутка (страница флипчарта 21).

Мы руками поведем — Будто в море мы плывем. Раз, два, три, четыре — Вот мы к берегу приплыли, Чтобы косточки размять, Начнем наклоны выполнять — Вправо, влево, вправо, влево. Не забудем и присесть — Раз, два, три, четыре, На счет пять — за парты сесть. Мы выполнили алгоритм, и достигли определенной цели: отдохнули, расслабились.

4. Выполнение практической работы. Работа по разноуровневым карточкам. (страница флипчарта 22).

И возвращаемся к словам французского ученого Гюстава Гийома “Дорогу осилит идущий, а информатику мыслящий”.

Укажите стрелочками, к какому типу алгоритма относятся данные изображения. Дайте названия алгоритмам (страница флипчарта 23).

Заполнить таблицу двумя примерами на каждый тип алгоритма (страница флипчарта 24).
Составьте алгоритм в программе Paint, используя команды перемещения и копирования. Вариант 1.(страница флипчарта 25). «Посадка саженца». Вариант 2.(страница флипчарта 26). Эпизод из сказки «Гуси-лебеди».

IV. Домашнее задание (страница флипчарта 27).

1. Выучить конспект. 2. Нарисовать на А4 формате пример циклического алгоритма и блок – схему к сказке «Колобок».

V. Итог урока. (страница флипчарта 28).

На этом урок заканчивается. Наша цель достигнута. Мы повторили основные понятия алгоритма, познакомились типами алгоритмов, успешно применили знания на практике, вспомнили сказки, пословицы.

VI. Рефлексия. (страница флипчарта 29).

–Что вам сегодня понравилось на уроке? – Что вы запомнили? – Что было интересного?

VII. Оценивание.

Сегодня у вас будут вместо отметок – смайлики, которыми я оценю ваши успехи на уроке.
 

Приложение 2

Технологическая карта №1 Тема урока: Типы алгоритмов: линейные, разветвляющиеся, циклические. Цели урока: Научимся составлять классификацию типов алгоритмов; Научимся представлять алгоритмы в виде блок-схем.

1. Проверка домашнего задания.

Выполнение тестов https://bilimland.kz/ru/courses/informatika-ru/6-klass/lesson/ponyatie-algoritma-i-ispolnitelya
2. Теоретическая часть
Условные обозначения для блок-схем:

— начало или конец программы
— ввод данных
— действия
-условие решения программы
-вывод данных или текста
-цикл с параметром
-подпрограмма
— стрелки – направление процесса Алгоритмы бывают трех типов: -линейный -разветвляющийся -циклический Линейные алгоритмы – алгоритм, в котором команды выполняются в порядке их записи, т. е. последовательно друг за другом. (страница флипчарта 8) Пример 1 . Сказка «Курочка Ряба» Разветвляющийся алгоритм — алгоритм, в котором в зависимости от выполнения некоторого условия совершается либо одна, либо другая последовательность действий. В словесном описании разветвляющегося алгоритма используются слова «если», «то», «иначе». Полная форма: «если выполняется условие, то …, иначе …» . Действия предусмотрены и при выполнении условия, и при его невыполнении. Неполная форма: «если выполняется условие, то …». Действия предусмотрены только при выполнении условия. При невыполнении условия. Пример 2. Если пошёл дождь, то откройте зонт, иначе – зонт положите в сумку (полная форма разветвляющегося алгоритма); Если пошёл дождь, то откройте зонт (неполная форма разветвляющегося алгоритма). Пример 3. “Купить мороженое” . Циклический алгоритм- алгоритм, в котором действия повторяются конечное число раз. Пример 4. Алгоритм «Наполнение». Начало 1. Пока ведро неполное, повторять: 2. Налить в ведро кружку воды. Конец 3. Решение задач-тренингов (коллективная работа). Тренинг-задача № 1. Составить алгоритм «Почисти ковер». Тренинг-задача № 2. 1.Назови тип алгоритма. 2. Заполни алгоритм. Записать с помощью блок-схемы пословицу «Болен – лечись, а здоров – берегись». Тренинг-задача № 3. Мальчик учит наизусть четверостишие, заданное по литературе. Он один раз прочитывает четверостишие и пытается воспроизвести его по памяти. Так он будет делать до тех пор, пока не расскажет четверостишие без единой ошибки. Составить действия мальчика в виде блок-схемы. 4. Физкультминутка. Мы руками поведем — Будто в море мы плывем. Раз, два, три, четыре — Вот мы к берегу приплыли, Чтобы косточки размять, Начнем наклоны выполнять — Вправо, влево, вправо, влево. Не забудем и присесть — Раз, два, три, четыре, На счет пять — за парты сесть. 5. Выполнение практической работы. Работа по разноуровневым карточкам.

1. Выполните задание № 1,2,3 по ресурсу www.bilimland.kz

(ссылка https://bilimland.kz/ru/courses/informatika-ru/6-klass/lesson/tipy-algoritmov)

Заполнить таблицу двумя примерами на каждый тип алгоритма.

Составьте алгоритм в программе Paint, используя команды перемещения и копирования.

Вариант 1. «Посадка саженца». Вариант 2. Эпизод из сказки «Гуси-лебеди». 6. Домашнее задание. 1. Выучить конспект. 2. Нарисовать на А4 формате пример циклического алгоритма и блок – схему к сказке «Колобок».

7. Вопросы.

Примеры линейного алгоритма Примеры разветвляющегося алгоритма Примеры циклического алгоритма

1. Какие типы алгоритмов различают?
2. Какие типы алгоритмов изображены на рисунках.

Приложение № 3

Разноуровневые карточки
1. Выполните задание № 1,2,3 по ресурсу  www.bilimland.kz
Заполнить таблицу двумя примерами на каждый тип алгоритма.
Составьте алгоритм в программе Paint, используя команды перемещения и копирования. Вариант 1.(страница флипчарта 25). «Посадка саженца». Вариант 2.(страница флипчарта 26).

Эпизод из сказки «Гуси-лебеди».

Источник: https://bilimland.kz/ru/teacher-page/uroki-i-klassnye-chasy/informatika/material/tipy-algoritmov-linejnye-razvetvlyayushiesya-cziklicheskie

Виды алгоритмов в информатике: примеры

Линейный тип алгоритмов

При изучении информатики немало внимания уделяется изучению алгоритмов и их видам. Не зная основных сведений о них, нельзя написать программу или проанализировать ее работу. Изучение алгоритмов начинается еще в школьном курсе информатики. Сегодня мы рассмотрим понятие алгоритма, свойства алгоритма, виды.

Понятие

Алгоритм – это определенная последовательность действий, которая приводит к достижению того или иного результата. Составляя алгоритм, детально прописывают каждое действие исполнителя, которое в дальнейшем приведет его к решению поставленной задачи.

Довольно часто алгоритмы используют в математике для решения тех или иных задач. Так, многим известен алгоритм решения квадратных уравнений с поиском дискриминанта.

Свойства

Прежде чем рассматривать виды алгоритмов в информатике, необходимо выяснить их основные свойства.

Среди основных свойств алгоритмов необходимо выделить следующие:

  • Детерминированность, то есть определенность. Заключается в том, что любой алгоритм предполагает получение определенного результата при заданных исходных.
  • Результативность. Означает, что при наличии ряда исходных данных после выполнения ряда шагов будет достигнут определенный, ожидаемый результат.
  • Массовость. Написанный единожды алгоритм может использоваться для решения всех задач заданного типа.
  • Дискретность. Она подразумевает, что любой алгоритм можно разбить на несколько этапов, каждый из которых имеет свое назначение.

Способы записи

Вне зависимости от того, какие виды алгоритмов в информатике вы рассматриваете, существует несколько способов их записи.

  1. Словесный.
  2. Формульно-словесный.
  3. Графический.
  4. Язык алгоритма.

Наиболее часто изображают алгоритм в виде блок-схемы, используя специальные обозначения, зафиксированные ГОСТами.

Основные виды

Выделяют три основных схемы:

  1. Линейный алгоритм.
  2. Ветвящийся алгоритм, или разветвленный.
  3. Циклический.

Далее мы рассмотрим виды алгоритмов в информатике, примеры, которые помогут более детально понять, как они работают.

Линейный

Наиболее простым в информатике считается линейный алгоритм. Он предполагает последовательность выполнения действий. Приведем наиболее простой пример алгоритма такого вида. Назовем его «Сбор в школу».

1. Встаем, когда звенит будильник.

2. Умываемся.

3. Чистим зубы.

4. Делаем зарядку.

5. Одеваемся.

6. Кушаем.

7. Обуваемся и идем в школу.

8. Конец алгоритма.

Разветвляющийся алгоритм

Рассматривая виды алгоритмов в информатике, нельзя не вспомнить о разветвляющейся структуре. Данный вид предполагает наличие условия, при котором в случае его выполнения действия выполняются в одном порядке, а в случае невыполнения – в другом.

Например, возьмем следующую ситуацию – переход дороги пешеходом.

1. Подходим к светофору.

2. Смотрим на сигнал светофора.

3. Он должен быть зеленым (это условие).

4. Если условие выполняется, мы переходим дорогу.

4.1 Если нет – ждем, пока загорится зеленый.

4.2 Переходим дорогу.

5. Конец алгоритма.

Циклический алгоритм

Изучая виды алгоритмов в информатике, детально следует остановиться на циклическом алгоритме. Данный алгоритм предполагает участок вычислений или действий, который выполняется до выполнения определенного условия.

Возьмем простой пример. Если ряд чисел от 1 до 100. Нам необходимо найти все простые числа, то есть те, которые делятся на единицу и себя. Назовем алгоритм «Простые числа».

1. Берем число 1.

2. Проверяем, меньше ли оно 100.

3. Если да, проверяем простое ли это число.

4. Если условие выполняется, записываем его.

5. Берем число 2.

6. Проверяем, меньше ли оно 100.

7. Проверяем, простое ли оно.

…. Берем число 8.

Проверяем, меньше ли оно 100.

Проверяем, простое ли число.

Нет, пропускаем его.

Берем число 9.

Таким образом перебираем все числа, до 100.

Как видите, шаги 1 – 4 будут повторяться некоторое число раз.

Среди циклических выделяют алгоритмы с предусловием, когда условие проверяется в начале цикла, или с постусловием, когда проверка идет в конце цикла.

Другие варианты

Алгоритм может быть и смешанным. Так, он может быть циклическим и разветвленным одновременно. При этом используются разные условия на разных отрезках алгоритма. Такие сложные структуры приеняются при написании сложных программ и игр.

Обозначения в блок-схеме

Мы с вами рассмотрели, какие виды алгоритмов есть в информатике. Но мы не рассказали о том, какие обозначения используются при их графической записи.

  1. Начало и конец алгоритма записываются в овальной рамке.
  2. Каждая команда фиксируется в прямоугольнике.
  3. Условие прописывается в ромбе.
  4. Все части алгоритма соединяются при помощи стрелок.

Выводы

Мы с вами рассмотрели тему «Алгоритмы, виды, свойства». Информатика уделяет немало времени изучению алгоритмов. Их используют при написании различных программ как для решения математических задач, так и для создания игр и различного рода приложений.

Источник: https://FB.ru/article/283912/vidyi-algoritmov-v-informatike-primeryi

Понятие алгоритма

Линейный тип алгоритмов

Понятие алгоритма. Исполнитель алгоритма. Свойства алгоритма. Способы записи алгоритмов.

Основные алгоритмические структуры: следование, ветвление, цикл; изображение

 на блок-схемах.  Вспомогательные алгоритмы.

Алгоритм – описание последовательности действий (план), строгое исполнение которых приводит к решению поставленной задачи за конечное число шагов.

Вы постоянно сталкиваетесь с этим понятием в различных сферах деятельности человека (кулинарные книги, инструкции по использованию различных приборов, правила решения математических задач…). Обычно мы выполняем привычные действия не задумываясь, механически.

Например, вы хорошо знаете, как открывать ключом дверь. Однако, чтобы научить этому малыша, придется четко разъяснить и сами эти действия и порядок их выполнения: 1. Достать ключ из кармана. 2. Вставить ключ в замочную скважину. 3. Повернуть ключ два раза против часовой стрелки.

4. Вынуть ключ.

Если вы внимательно оглянитесь вокруг, то обнаружите множество алгоритмов которые мы с вами постоянно выполняем. Мир алгоритмов очень разнообразен. Несмотря на это, удается выделить общие свойства, которыми обладает любой алгоритм.

Свойства алгоритмов:

Дискретность (от лат. discretus — разделённый, прерывистый, раздельность) (алгоритм должен состоять из конкретных действий, следующих в определенном порядке);

Детерминированность (от. лат. determinate – определенность, точность) (любое действие должно быть строго и недвусмысленно определено в каждом случае);

Конечность (каждое действие и алгоритм в целом должны иметь возможность завершения);

Массовость (один и тот же алгоритм можно использовать с разными исходными данными);

Результативность (отсутствие ошибок, алгоритм должен приводить к правильному результату для всех допустимых входных значениях).

Виды алгоритмов:

1. Линейный алгоритм (описание действий, которые выполняются однократно в заданном порядке);

2. Циклический алгоритм (описание действий, которые должны повторятся указанное число раз или пока не выполнено заданное условие);

3. Разветвляющийся алгоритм (алгоритм, в котором в зависимости от условия выполняется либо одна, либо другая последовательность действий);

4. Вспомогательный алгоритм (алгоритм, который можно использовать в других алгоритмах, указав только его имя).

На практике наиболее распространены следующие формы представления алгоритмов:

В устной форме. В письменной форме на естественном языке. В письменной форме на формальном языке.

Для более наглядного представления алгоритма широко используется графическая форма – блок-схема, которая составляется из стандартных графических объектов.

При графическом представлении алгоритм изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий.

В блок-схеме каждому типу действий (вводу исходных данных, вычислению значений выражений, проверке условий, управлению повторением действий, окончанию обработки и т.п.

) соответствует геометрическая фигура.

Стадии создания алгоритма: 1. Алгоритм должен быть представлен в форме, понятной человеку, который его разрабатывает (определить цель, наметить план действий). 2.

Алгоритм должен быть представлен в форме, понятной тому объекту (в том числе и человеку), который будет выполнять описанные в алгоритме действия (выбрать среду и объект алгоритма, детализировать алгоритм). Объект, который будет выполнять алгоритм, обычно называют исполнителем.

Исполнитель — объект, который выполняет алгоритм. Назначение исполнителя точно выполнить предписания алгоритма, подчас не задумываясь о результате и целях, т.е. формально. Идеальными исполнителями являются машины, роботы, компьютеры…

Компьютер – автоматический исполнитель алгоритмов.

Алгоритм, записанный на «понятном» компьютеру языке программирования, называется программой.

Линейный алгоритм
Линейный алгоритм – описание действий, которые выполняются однократно в заданном порядке. Исполнитель выполняет действия последовательно, одно за другим в том порядке в котором они следуют.

Блок-схема линейного алгоритма:

Циклический алгоритм

Циклический алгоритм – описание действий, которые должны повторяться указанное число раз или пока не выполнено заданное условие. Перечень повторяющихся действий называют телом цикла.

Циклические алгоритмы бывают двух типов: Циклы со счетчиком, в которых какие-то действия выполняются определенное число раз; Циклы с условием, в которых тело цикла выполняется, в зависимости от какого-либо условия. Различают циклы с предусловием и постусловием.

Циклы со счетчиком используют когда заранее известно какое число повторений тела цикла необходимо выполнить. Например, на уроке физкультуры вы должны пробежать некоторое количество кругов вокруг стадиона.

Для счетчика от нач. значения до кон. значения выполнить действие.

Часто бывает так, что необходимо повторить тело цикла, но заранее не известно, какое количество раз это надо сделать. В таких случаях количество повторений зависит от некоторого условия.

Такие циклы называются циклы с условием. Циклы в которых сначала проверяется условие, а затем, возможно, выполняется тело цикла называют циклы с предусловием. Если условие проверяется после первого выполнения тела цикла, то циклы называются циклы с постусловием.

Например, в субботу вечером вы смотрите телевизор. Время от времени поглядываете на часы и если время меньше полуночи, то продолжаете смотреть телевизор, если это не так, то вы прекращаете просмотр телепередач.

В общем случае схема циклического алгоритма с условием будет выглядеть так:

Пока условие повторять действие.

При составлении циклических алгоритмов важно думать о том, чтобы цикл был конечным. Ситуация, при которой выполнение цикла никогда не заканчивается, называется зацикливанием.

Разветвляющийся алгоритм Во многих случаях требуется, чтобы при одних условиях выполнялась одна последовательность действий, а при других – другая. Если пошел дождь, то надо открыть зонт.

Если прозвенел будильник, то надо вставать. Если встречу Сашу, то скажу ему … Если встречу Сашу, то скажу ему …, иначе зайду к нему сам.

Разветвляющийся алгоритм — алгоритм, в котором в зависимости от условия выполняется либо одна, либо другая последовательность действий.

Эти предложения начинаются с проверки какого-либо условия: пошел дождь, прозвенел будильник, встретил Сашу… Далее в зависимости мы либо вылиняем какое-либо действие, либо не выполняем его (или выполняем какое-то другое действие).

Компьютер тоже в зависимости от какого-либо условия может выполнять или не выполнять те или иные действия. Алгоритм, в котором используется условие, получил название разветвляющегося, так как в зависимости от значения условия выбираются те или иные действия.

В общем случае схема разветвляющегося алгоритма будет выглядеть так: «если условие, то действие 1, иначе действие 2» (Если встречу Сашу, то скажу ему …, иначе зайду к нему сам.).

Так же можно использовать неполную форму: «если условие, то действие» (Если встречу Сашу, то скажу ему ). В этом случае не предусматривается действий на случай невыполнения условия.

Условие – это высказывание которое может быть либо истинно, либо ложно. Еще раз обратим внимание, что существует две формы ветвления – неполная (когда присутствует только одна ветвь, т.е.

в зависимости от истинности условия либо выполняется, либо не выполняется действие) и полная (когда присутствуют две ветви, т.е. в зависимости от истинности условия выполняется либо одно, либо другое действие).

Вспомогательный алгоритм

Вспомогательный алгоритм – алгоритм, который можно использовать в других алгоритмах, указав только его имя.

Источник: http://vplaksina.narod.ru/uchebnik/algoritm.htm

Типы алгоритмов. урок. Информатика 6 Класс

Линейный тип алгоритмов

Алгоритмы могут быть простыми, сложными, однако у всех из них есть общие черты. Вот по этим чертам и принято выделять три типа алгоритмов, с которыми мы и познакомимся.

В алгоритмах команды записываются друг за дру­гом в определенном порядке. Выполняются они не обязательно в записанной последовательности. Могут существовать внутренние отсылки к различным командам.

Вообще, выполнение команд по алгоритму чем-то напоминает настольные игры, в которых участники по очереди бросают кубики и ходят по полям. Причем на полях могут быть комментарии в стиле: «Вернитесь на 2 клетки назад» или «Пройдите на 5 клеток вперед» (рис. 1).

Рис. 1. Настольная игра (Источник)

Более сложной моделью выполнения алгоритма является известная игра «Монополия» или «Менеджер» (рис. 2).

Рис. 2. Игра «Монополия» (Источник)

Существенное отличие этой игры от простого выполнения алгоритма состоит в том, что конечной целью участников является не прохождение пути, а накопление денег при помощи определенных действий.

В зави­симости от порядка выполнения команд можно выде­лить три типа алгоритмов:

• линейные алгоритмы;

• алгоритмы с ветвлениями;

• алгоритмы с повторениями.

«Монополия»

«Монополия» относится к одной из самых популярных настольных игр. Ее правила достаточно просты и понятны каждому, кто хоть раз в нее играл (рис. 4).

Рис. 4. Игра «Монополия» (Источник)

На момент старта игроки обладают равным количеством наличных денег. Бросая кубики и передвигая свои фишки по закольцованному игровому полю, они приобретают участки недвижимости разных цветов.

Оказавшись на приобретенном противником участке, игрок обязан выплатить тому установленную арендную плату. Выкупив все участки одной цветовой группы, участник может строить на них дома и отели, которые увеличивают размеры аренды.

Цель всего происходящего банальна – разорить всех соперников.

Согласно официальным источникам – компании Parker Brothers, с 1935 года и по сей день выпускающей «Монополию», – легендарная настольная игра появилась на свет следующим образом. В 1934 году безработный инженер Чарльз Дарроу (рис. 5) предложил вышеуказанной конторе выпустить придуманную им игру о торговле недвижимостью.

Рис. 5. Чарльз Дарроу (Источник)

Обнаружив в настольной игре 52 дизайнерские ошибки, братья Паркеры отказали изобретателю. Тот с чисто американской предприимчивостью отправился в типографию, заказал 5 тысяч экземпляров игры и довольно быстро их распродал.

Осознав, что прибыль утекает прямо у них из-под носа, Parker Brothers спешно приобрели права на «Монополию», и уже в следующем году она стала самой продаваемой настольной игрой в США, а Дарроу – живым воплощением американской мечты.

Однако вместе с тем известны и более ранние игры, поразительно напоминающие «Монополию». Выходит, Дарроу просто оказался первым, кто подсуетился и получил патент на «народную» забаву? И да, и нет. Расследования последних лет проливают свет на тайну происхождения «Монополии».

Во второй половине позапрошлого века в Соединенных Штатах жил и работал политэкономист Генри Джордж. Он предлагал заменить все поборы одним-единственным налогом – на землю.

Проникшись его идеями, в январе 1904 года Мэги получает патент на настольную игру The Landlord’s Game, которая и правилами, и внешним видом напоминает нынешнюю «Монополию».

Считается, что «Игра владельца земли» обладала двумя вариантами правил: сыграв партию по действующим законам налогообложения, игроки переходили к модели, предложенной Джорджем, – и якобы убеждались в ее необходимых преимуществах. Таким образом, игра была не развлечением, но инструментом идеологической борьбы.

До массового производства дело не дошло, зато The Landlord’s Game постепенно распространилась по Северной Америке в кустарных копиях.

Всплеск интереса к настольной игре пришелся на годы Великой депрессии: тысячи безработных были рады вообразить себя денежными мешками хотя бы за игровым столом.

Появление предприимчивого человека вроде Чарльза Дарроу стало делом нескольких месяцев – и он появился, на многие десятилетия присвоив славу единоличного изобретателя «Монополии».

Нашлись, конечно, и те, кто счел должным урвать кусок у правообладателей. Нелицензионные «Монополии» наводнили Китай. И в нашей стране выпускались и выпускаются стройные ряды клонов – «Маклер», «Кооператив», «Менеджер» (рис. 6)…

Рис. 6. Игра «Менеджер» (Источник)

В свете недавнего переосмысления роли Дэрроу в создании «Монополии» и истечения действия авторских прав засудить такие компании не получится.

Даже если предположить, что никакой Элизабет Мэги на свете не было, правила «Монополии» давно перешли в общественное достояние.

Впрочем, часть патента Hasbro все еще держит при себе: дизайн фишек, графическое оформление, последовательность клеток на игровом поле.

Алгоритм, в котором команды выполняются в по­рядке их записи, то есть последовательно друг за дру­гом, называется линейным.

Рис. 3. Лампочка (Источник)

Например, линейным является следующий алго­ритм замены перегоревшей лампочки (рис. 3):

1. выключить выключатель света;

2. выкрутить перегоревшую лампочку;

3. вкрутить новую лампочку;

4. включить выключатель, чтобы проверить, что лампочка горит.

С помощью блок-схемы данный алгоритм можно изобразить так:

(блок-схему (рис. 7.) см. в конце конспекта)

Ситуации, когда заранее известна последователь­ность требуемых действий, встречаются крайне редко. В жизни часто приходится принимать решение в за­висимости от сложившейся обстановки. Если идет дождь, мы берем зонт и надеваем плащ; если жарко, надеваем легкую одежду. Встречаются и более слож­ные условия выбора. В некоторых случаях от выбран­ного решения зависит дальнейшая судьба человека.

Логику принятия решения можно описать так:

ЕСЛИ , ТО ,

ИНАЧЕ

Примеры:

• ЕСЛИ будут деньги, ТО купи хлеба, ИНАЧЕ не покупай.

• ЕСЛИ будешь сегодня в центре, ТО набери меня, ИНАЧЕ не набирай.

• ЕСЛИ уроки выучены, ТО иди гулять, ИНАЧЕ учи уроки.

В некоторых случаях могут отсут­ствовать. Это может быть связано как с его очевидностью (как, например, в первом примере – понятно, что если у тебя нет денег, то хлеба ты купить просто не сможешь), так и с отсутствием необходимости в нем.

ЕСЛИ , ТО

Пример:

• ЕСЛИ назвался груздем, ТО полезай в кузов.

• ЕСЛИ хочешь быть здоров, ТО закаляйся.

Форма организации действий, при которой в зави­симости от выполнения или невыполнения некоторого условия совершается либо одна, либо другая последо­вательность действий, называется ветвлением.

Изобразим в виде блок-схемы последовательность действий ученика 6 класса, забывшего ключи от квартиры, которую он представляет себе так: «Если мама дома, то я приду и сяду делать домашнее задание. Если мамы дома нет, то я пойду поиграть с друзьями в футбол, пока не придет мама. Если друзей на улице не будет, то покатаюсь на качелях до тех пор, пока не придет мама».

(блок-схему (рис. 8.) см. в конце конспекта)

Необходимые и достаточные условия

Мы уже обсуждали с вами, что существуют необходимые и достаточные условия.

Примером необходимого условия может служить такое:

Чтобы стать врачом, необходимо получить медицинское образование.

Условие наличия медицинского образования является необходимым для работы врачом, однако не является достаточным. Действительно, не все выпускники медицинских вузов становятся врачами.

Примером достаточного условия может стать такое:

Для того чтобы стало прохладнее, достаточно включить кондиционер.

Это условие является достаточным: если включить кондиционер, то действительно станет прохладнее. Однако это условие не является необходимым, ведь для достижения той де цели можно включить вентилятор, открыть окно и т. п.

Конечно же, существуют необходимые и достаточные условия одновременно (такие условия называются равносильными). Например:

Для того чтобы наступило лето, необходимо и достаточно, чтобы закончилась весна.

Действительно, если весна закончилась, то наступает лето, а если весна не закончилась, то лето наступить не может. То есть условия окончания весны и начала лета являются равносильными.

Понятия необходимого, достаточного и равносильного условий очень важны в таком разделе математики, как математическая логика. К тому же, они очень часто встречаются при доказательстве различных теорем.

На практике часто встречаются задачи, в которых одно или несколько действий бывает необходимо по­вторить несколько раз, пока соблюдается некоторое за­ранее установленное условие.

Например, если вам необходимо перебрать ящик с яблоками, чтобы отделить гнилые от спелых, то нам необходимо повторять следующие действия:

1. Взять яблоко.

2. Посмотреть, не гнилое ли оно.

3. Если гнилое – выбросить, если нет – переложить в другой ящик.

Выполнять этот набор действий необходимо до тех пор, пока не закончатся яблоки в ящике.

Форма организации действий, при которой выпол­нение одной и той же последовательности действий по­вторяется, пока выполняется некоторое заранее уста­новленное условие, называется циклом (повторением).

Алгоритм, содержащий циклы, называется цикли­ческим алгоритмом, или алгоритмом с повторениями.

Ситуация, при которой выполнение цикла никогда не заканчивается, называется зацикливанием.

Следует разрабатывать алгоритмы, не допускающие таких си­туаций.

Рассмотрим алгоритм работы будильника на телефоне, который должен зазвонить в 8:00 утра, а затем звонить через каждые 10 минут, до тех пор пока его не выключат.

В этом случае его блок-схема выглядит так: (блок-схему (рис. 9.) см. в конце конспекта)

На этом уроке мы обсудили три типа алгоритмов – линейные алгоритмы, алгоритмы с ветвлениями и алгоритмы с повторениями.

На следующем уроке мы на практике обсудим составление алгоритмов.

Решето Эратосфена

Вспомним определение простого натурального числа.

Натуральное число называют простым, если оно имеет только два делителя: единицу и само это число. Остальные числа называются составными. При этом число 1 не является ни простым, ни составным.

Примеры простых чисел: 2, 3, 5, 7.

Примеры составных чисел: 4, 6, 8.

В III веке до нашей эры греческий математик Эратос­фен предложил следующий алгоритм для нахождения всех простых чисел, меньших заданного числа п:

1. выписать все натуральные числа от 1 до n;

2. вычеркнуть 1;

3. подчеркнуть наименьшее из неотмеченных чисел;

4. вычеркнуть все числа, кратные подчеркнутому на предыдущем шаге числу;

5. если в списке имеются неотмеченные числа, то пе­рейти к шагу 3, в противном случае все подчеркну­тые числа – простые.

Это циклический алгоритм. При его выполнении повторение шагов 3–5 происходит, пока в исходном списке остаются неотмеченные числа.

Рассмотрим результат этого алгоритма. Выпишем все простые числа от 1 до 25.

Выпишем числа от 1 до 25.

Вычеркнем 1. Теперь подчеркнем двойку. Вычеркнем все четные числа.

Так как не все числа отмечены, то подчеркиваем 3. Теперь вычеркиваем все числа, которые делятся на 3.

Так как не все числа отмечены, то подчеркиваем 5. Теперь вычеркиваем число 25.

Так как не все числа отмечены, то подчеркиваем 7.

Вычеркнуть ничего нельзя, но не все числа отмечены, поэтому подчеркиваем 11.

Вычеркнуть ничего нельзя, но не все числа отмечены, поэтому подчеркиваем 13. Снова нельзя ничего вычеркнуть – подчеркиваем 17, затем 19 и 23.

Теперь все числа отмечены.

Получаем простые числа: 2, 3, 5, 7, 11, 13, 17, 19, 23.

Рис. 7. Блок-схема для смены лампочки

Рис. 8. Блок-схема действий шестиклассника

Рис. 9. Блок-схема работы будильника

Список литературы

1. Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса. – М.: БИНОМ. Лаборатория знаний, 2012.

2. Босова Л.Л. Информатика: Рабочая тетрадь для 6 класса. – М.: БИНОМ. Лаборатория знаний, 2010.

3. Босова Л.Л., Босова А.Ю. Уроки информатики в 5-6 классах: Методическое пособие. – М.: БИНОМ. Лаборатория знаний, 2010.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет портал «Наша сеть» (Источник)

2. Интернет портал «Гипермаркет знаний» (Источник)

3. Интернет портал «kaz.docdat.com» (Источник)

Домашнее задание

1. §3.4 (Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса).

2. Стр. 81 задание 2, 6 (Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса).

3. Стр. 82 задание 9, 11, 13, 14 (Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса).

4. * Стр. 83 задание 15 (Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса).

Источник: https://interneturok.ru/lesson/informatika/6-klass/algoritm-i-ispolniteli/tipy-algoritmov?block=player

Booksm
Добавить комментарий