Квантовая теория сознания

Теория квантового сознания — наука или религия?

Квантовая теория сознания

Гипотеза о том, что наше сознание может рассматриваться как квантовый процесс, возникла в начале 1990-х годов на волне новой научной революции, подталкивающей общество к очередному переосмыслению мира. Гипотезу приняли в штыки, и по сей день она считается маргинальной. Однако с каждым годом находит все больше сторонников.

В 1900 году немецкий физик Макс Планк, занимавшийся вопросами излучения абсолютно черного тела, ввел понятие квантов — неделимых порций энергии, которыми материальные объекты обмениваются друг с другом при нагреве или охлаждении.

Модель Планка противоречила господствовавшими в то время физическими теориями, поэтому он долго не решался представить ее коллегам, а когда представил, то его идеи были восприняты как своего рода «игра ума», помогающая упростить расчеты. Но вскоре практикующие физики обнаружили, что модель Планка не только сводится к изящным вычислениям, но и согласуется с экспериментами.

Макс Планк

В 1905 году Альберт Эйнштейн опубликовал три статьи, в одной из которых высказал гипотезу, что свет испускается и поглощается квантами энергии, тем самым поддержав Планка. В последующие два десятилетия квантовая модель набирала все больше сторонников среди передовых ученых, превратившись из маргинальной в одну из основополагающих.

Раскол в научном мире произошел в 1925 году, когда попытки описать квантовые процессы как новую механику привели к «безумному» результату: оказалось, что на квантовом уровне законы классической механики не работают, а наблюдаются эффекты, вступающие в противоречие с материалистическим взглядом на мир.

Еще через десять лет Эрвин Шредингер показал, что любая квантовая система находится в состоянии неопределенности («суперпозиции»), а привести ее к одному из стабильных состояний можно, осуществив прямое наблюдение за системой.

Получалось, что объективной картины мира не существует, ведь состояние Вселенной на базовом уровне зависит от субъективности наблюдателя.

Далеко не все физики согласились признать верность выводов создателей квантовой механики, ведь в таком случае пришлось бы пожертвовать собственными убеждениями.

Эрвин Шредингер

Со временем наука примирилась с парадоксальными квантовыми эффектами. И, более того, научилась их использовать на практике, например, в технологиях нового поколения — квантовом компьютере и квантовой связи.

Основы квантовых вычислений, оперирующих неопределенностью до получения результата, навели физиков на мысль, что нечто подобное происходит не только на уровне мертвой материи, но и в сложных биологических системах.

В 1989 году вышла книга оксфордского профессора Роджера Пенроуза «Новый ум короля», в которой он представил публике свои соображения о «квантовом сознании».

Ученый рассматривал три точки зрения на природу сознания.

Первая (материалистическая) — сознание возникло в ходе обычных процессов, подчиняющихся классическим законам физики, и является способом биологической адаптации высокоразвитого мозга и нервной системы.

Вторая (идеалистическая) — сознание представляет собой особую форму существования материи, которая пока находится вне нашего понимания и изучается методами спиритуализма. Третья (квантовая) — сознание возникает как результат ряда физических событий, происходящий с момента возникновения Вселенной, поэтому его можно считать одним из фундаментальных свойств нашего мира.

Роджер Пенроуз

Пенроуз писал, что мы не можем сказать, в какой момент возникают функции сознания, связанные прежде всего с формой обработки информации (когнитивностью), однако утверждал, что понять природу нашего разума и объяснить существование души возможно только с учетом квантовых эффектов.

Чтобы обосновать свое утверждение, Пенроуз прибег к так называемому «геделевскому аргументу». Тут нужно вспомнить теорему о неполноте, доказанную австрийским математиком Куртом Геделем в 1930 году. Он показал, что если существует некая непротиворечивая формальная система, то в ней обязательно есть невыводимое и неопровержимое утверждение.

Применительно к математике теорему можно переформулировать так: в любой арифметической системе есть невыводимая формула, например, в основе множества доказательств различных теорем лежит формула равенства числа самому себе, оно не выводится откуда-либо и не может быть опровергнуто, всегда оставаясь аксиомой.

Теорему о неполноте в свое время приняли как формальное доказательство ограниченности нашего разума, однако Роджер Пенроуз предложил взглянуть на нее под другим углом. Как мы знаем, компьютеры оперируют вычислениями, построенными на математической логике, поэтому пределы их возможностей ограничены теоремой Геделя.

Но человеческое мышление часто выходит за формальную логику. Более того, мы способны поменять любую логическую систему так, чтобы поменялся весь аксиоматический аппарат.

Следовательно, наш мозг построен на принципах, которые далеки от используемых в компьютерах и которые, вероятно, связаны с квантовыми эффектами. Пенроуз — авторитетный физик, но, увы, слабо разбирается в биологии.

Поэтому он не смог определенно сказать, какие именно механизмы в человеческом мозгу отвечают за «квантовое» мышление.

Ему на помощь пришел американский нейробиолог Стюарт Хамерофф, который с 1975 года занимается изучением природы сознания. В 1987 году он опубликовал книгу «Абсолютный компьютер», в которой указал на загадочные волокнистые структуры — микротрубочки цитоскелета нейронов головного мозга. Они состоят из белка тубулина.

Стюарт Хамерофф

При определенных условиях электроны, находящиеся в пределах микротрубочек, вступают в «запутанное» состояние, образуя квантовые кубиты (квантовые биты информации), которые и являются физической основой нашего разума, способного выходить за пределы формальной логики.

В 1994 году Хамерофф и Пенроуз, объединив усилия, создали «нейрокомпьютерную модель сознания», которая позднее превратилась в теорию квантового нейрокомпьютинга (теорию Хамероффа-Пенроуза), развивающуюся по сей день. Разумеется, она встретила резкую критику. Прежде всего оппоненты указывали на «хрупкость» кубита. Достаточно столкновения с одним лишь фотоном, чтобы разрушить квантовые свойства системы.

Кроме того, современные квантовые компьютеры очень чувствительны к шуму и способны работать при температурах, ненамного превышающих абсолютный нуль.

Поэтому предложенная модель выглядит нереалистичной с учетом того, что речь идет о теплом и влажном мозге.

Нейробиолог Патрисия Черчленд из Калифорнийского университета язвительно заявила, что с тем же успехом для объяснения природы сознания можно рассуждать о «пыльце фей в синапсах».

Тем не менее некоторые явления, наблюдаемые биологами, находят объяснения только с позиций квантовой механики.

Например, еще в 1986 году физик Мэтью Фишер провел серию нашумевших экспериментов о влиянии изотопов лития на поведение крыс, в ходе которых доказал, что квантовая «запутанность» действительно влияет на когнитивные способности.

Через много лет, в 2015 году, он озвучил гипотезу, что молекулы фосфатов в головном мозге могут служить чем-то вроде «хранилища» стабильных кубитов.

Мэтью Фишер

Несмотря на критику, сторонники теории квантового сознания пошли еще дальше в рассуждениях. Во время одной из своих лекций Стюарт Хамерофф заявил, что его модель позволяет ответить на тревожащий всех вопрос о том, что происходит с душой после смерти.

По его словам, наше сознание — это самообучающаяся программа, которая развивается за счет перерабатываемой информации, а весь массив этой информации является душой. Главное, что эта информация не исчезает, оставаясь частью глобального вычислительного процесса, происходящего на квантовом уровне. Вероятно, после смерти мы утратим индивидуальность, но зато станем чем-то большим.

Конечно же, в адрес Хамероффа немедленно посыпались обвинения в идеализме, антинаучности и создании квазирелигии. Однако можно вспомнить, что в прошлом веке идеалистическими называли и теорию относительности, и теорию Большого взрыва, и саму квантовую механику. Может быть, стоит подождать?

Использованы материалы статьи Антона Первушина с сайта oracle-today.ru

Другие статьи по теме:

Views All Time

5734

Views Today

7

Источник: https://mirtayn.ru/teoriya-kvantovogo-soznaniya-nauka-ili-religiya/

Новый поворот в квантовой теории мозга

Квантовая теория сознания

Мэтью Фишер, предложивший теорию о влиянии квантовых эффектов на работу мозга

Простое упоминание «квантового сознания» причиняет большинству физиков дискомфорт, поскольку эта фраза, судя по всему, напоминает им бормотание какого-нибудь гуру от «Нью Эйдж».

Но если новая гипотеза подтвердится, окажется, что квантовые эффекты действительно играют некую роль в человеческом сознании.

Мэтью Фишер, физик из Калифорнийского университета в Санта-Барбаре, в прошлом году удивил многих, опубликовав в Annals of Physics работу с предположением о том, что ядерные спины атомов фосфора могут служить рудиментарными кубитами мозга – из-за чего он способен работать по принципу квантового компьютера.

Ещё лет 10 назад эту гипотезу отвергли бы как нонсенс. Физики уже наступали на подобные грабли, в особенности в 1989 году, когда Роджер Пенроуз предположил, что загадочные белковые структуры, «микротрубочки», играют роль в формировании сознания, используя квантовые эффекты. Мало кто поверил в достоверность такой гипотезы. Патрисия Чёрчлэнд [Patricia Churchland], нейрофилософ из Калифорнийского университета, высказалась на эту тему, что для объяснения сознания с тем же успехом можно рассуждать о «волшебной пыльце фей в синапсах». У гипотезы Фишера те же трудности, что и микротрубочек: квантовая декогеренция. Для постройки рабочего квантового компьютера необходимо объединить кубиты – квантовые биты информации – чтобы привести их в запутанное состояние. Но запутанные кубиты весьма хрупки. Их нужно тщательно ограждать от любого шума в окружающей среде. Один лишь фотон, столкнувшийся с кубитом, нарушит когерентность всей системы, уничтожит запутанность и разрушит квантовые свойства системы. Квантовую обработку тяжело вести в тщательно контролируемых лабораторных условиях, не говоря уже о тёплой, влажной и сложной каше человеческой биологии, в которой поддержание когерентности в течение достаточно длительного времени практически невозможно.

Но за последнее десятилетие появляется всё больше доказательств того, что некоторые биологические системы могут работать с квантовой механикой.

Например, в процессе фотосинтеза квантовые эффекты помогают растениям превращать солнечный свет в топливо.

Учёные также предполагают, что у перелётных птиц есть «квантовый компас», позволяющий им использовать для навигации магнитное поле земли, и что чувство запаха также корнями уходит в квантовую механику.

Идея Фишера о квантовой обработке данных в мозгу вписывается в новое научное направление квантовой биологии. Назовите это квантовой нейробиологией. Он разработал сложную гипотезу, включающую ядерную и квантовую физику, органическую химию, нейробиологию и биологию.

И хотя его идеи сталкиваются с высоким уровнем понятного скептицизма, некоторые исследователи обращают на них внимание.

«Читавшие его работы люди (а я надеюсь, что их станет больше), не могут не прийти к выводу о том, что старик не так уж и безумен», писал Джон Прескилл, физик из Калифорнийского технологического института после того, как Фишер делал там доклад. «Он, возможно, что-то нащупал. По меньшей мере, он поднимает весьма интересные вопросы».

Сентил Тодадри [Senthil Todadri], физик из MIT, давний друг и коллега Фишера, сохраняет скептицизм, но считает, что Фишер изменил главный вопрос – происходит ли в мозгу квантовые вычисления – таким образом, что появилась возможность тщательно проверить эту гипотезу.

«Принято считать, что разумеется, ни о каких квантовых вычислениях в мозгу не может быть и речи,- говорит Тодадри. – Он же утверждает, что на этот счёт есть ровно одна лазейка. Так что следующим шагом станет проверка возможности эту лазейку прикрыть».

И в самом деле, Фишер уже набирает команду для проведения лабораторных тестов, отвечающих на этот вопрос раз и навсегда.

В поисках спина

Фишер принадлежит к династии физиков. Его отец, Майкл И. Фишер – известный физик в Мэрилендском университете, чьи работы по статистической физике заслужили многочисленные награды. Его брат, Дэниел Фишер, прикладной физик в Стэнфордском университете, специализирующийся на эволюционной динамике.

Мэтью Фишер последовал по их стопам, строя очень успешную карьеру физика. В 2015 году он получил престижную награду Оливера И. Бакли за исследования квантовых фазовых переходов.

Так что же заставило его уйти от общепринятой физики по направлению к противоречивой и запутанной каши из биологии, химии, нейробиологии и квантовой физики? Его борьба с клинической депрессией. Фишер хорошо помнит тот день в феврале 1986 года, когда он проснулся, плохо чувствуя своё тело, и с ощущением, будто не спал неделю.

«Мне казалось, что меня накачали лекарствами»,- говорил он. Сон не помогал. Изменение диеты и упражнения ничего не дали, а анализы крови не выявили никаких патологий. Но такое его состояние сохранялось целых два года. «Это было похоже на головную боль по всему телу, каждое мгновение бодрствования», говорит он.

Он даже пробовал совершить самоубийство, но рождение его первой дочери придало смысл его дальнейшей борьбе с туманом депрессии.

В конце концов он нашёл психиатра, прописавшего ему трициклический антидепрессант, и через три недели его состояние стало улучшаться.

«Метафорический туман, окружавший меня, и заслонявший солнце, стал редеть, и я увидел, что за ним есть свет», говорит Фишер. Через пять месяцев он почувствовал, будто заново родился, несмотря на серьёзные побочные эффекты от лекарства, включающие чрезмерное кровяное давление. Позже он переключился на флуоксетин и с тех пор постоянно отслеживает и подстраивает режим принятия лекарств.

Его опыт убедил его в работоспособности лекарств. Но Фишер был удивлён тем, как мало нейробиологи знают о точных механизмах их работы. Это подогрело его любопытство, и благодаря опыту работы в области квантовой механики он начал рассматривать возможность квантовой обработки данных в мозге. Пять лет назад он занялся углублённым изучением вопроса, основываясь на своём собственном опыте принятия антидепрессантов. Поскольку практически все лекарства, применяемые в психиатрии, обычно оказываются сложными молекулами, он сконцентрировался на одной из самых простых, на литии, единичном атоме – так сказать, сферическом коне, изучать который гораздо легче, чем тот же флуоксетин. Кстати, эта аналогия, по словам Фишера, вполне подходит к данному случаю, поскольку атом лития представляет собой сферу из электронов, окружающих ядро. Он сконцентрировался на том факте, что по рецепту в аптеке обычно можно купить распространённый изотоп литий-7. А приведёт ли использование более редкого изотопа, лития-6, к тому же самому результату? В теории должно, поскольку химически эти изотопы идентичны. Они отличаются только количеством нейтронов в ядре.

Порывшись в литературе, Фишер обнаружил, что эксперименты по сравнению лития-6 и лития-7 уже проводились. В 1986 году учёные из Корнелльского университета изучали, какой эффект эти два изотопа оказывают на поведение крыс.

Беременных крыс разделили на три группы – одной давали литий-7, одной – литий-6, а третья служила контрольной группой.

После рождения потомства у крыс, получавших литий-6, материнский инстинкт, выражавшийся в уходе, заботе и строительстве гнёзд, был развит гораздо сильнее, чем у двух остальных групп.

Это поразило Фишера. Химически два изотопа должны быть идентичными, и тем более в заполненной влагой среде человеческого тела у них не должны проявляться какие-то различия. Так что же могло послужить причиной появления различий в поведении, наблюдаемых исследователями? Фишер считает, что секрет может крыться в спине ядра, в квантовом свойстве, влияющем на то, как долго каждый из атомов может оставаться когерентным – изолированным от окружения. Чем меньше спин, тем меньше ядро взаимодействует с электрическими и магнитными полями, и тем медленнее теряется когерентность. Поскольку у лития-7 и у лития-6 различное количество нейтронов, у них отличаются и спины. В результате литий-7 теряет когерентность слишком быстро для работы квантового сознания, а литий-6 может дольше оставаться запутанным. Фишер обнаружил два вещества, схожие во всём, кроме квантового спина, и нашё, что они оказывают разное влияние на поведение. Для него это был дразнящий намёк на то, что квантовая обработка данных играет какую-то функциональную роль в сознании.

Схема квантовой защиты

Однако задача перехода от интересной гипотезы к реальной демонстрации того, что квантовые процессы играют роль в работе мозга, выглядит удручающе. Мозгу нужен некий механизм долговременного хранения квантовой информации в кубитах. Необходимо запутывать множество кубитов, и эта запутанность каким-то химическим способом должна влиять на то, как работают нейроны.

Также должен существовать механизм передачи квантовой информации, хранящейся в кубитах, по всему мозгу. Это очень непростая задача.

За пять лет поисков Фишер определил только одного подходящего кандидата на хранение квантовой информации в мозгу: атомы фосфора, единственный распространённый биологический элемент, кроме водорода, с половинным спином, достаточно маленьким для увеличения времени когерентности.

Фосфор не может сам создавать стабильные кубиты, но его время когерентности можно продлить, если связать его с ионами кальция для формирования кластеров.

В 1975 году Аарон Познер [Aaron Posner], учёный из Корнелльского университета, обнаружил непонятную кластеризацию кальция и фосфора при изучении рентгеновских снимков костей.

Он нарисовал структуру этих кластеров – девять атомов кальция и шесть атомов фосфора, и позднее в его честь их стали называть «молекулами Познера». Эти кластеры вновь заявили о себе в 2000-х, когда учёные, симулируя рост костей в искусственной жидкости, заметили их, плавающими в ней. Последующие эксперименты обнаружили доказательства наличия их в теле. Фишер считает, что молекулы Познера могут служить естественным кубитом мозга.

Это общая картина, но дьявол в мелочах, которые Фишер изучает последние несколько лет. Процесс начинается в клетке с химическим веществом под названием пирофосфат. Он состоит из двух связанных фосфатов, каждый из которых состоит из атома фосфора, окружённого несколькими атомами кислорода с нулевым спином. Взаимодействие между спинами фосфатов запутывает их. Они могут создавать пары четырьмя различными способами: три конфигурации суммарно дают спин равный 1 (слабо связанный триплет), а четвёртая даёт нулевой спин, или «синглет», состояние максимальной запутанности, критически важное для квантовой механики. Далее ферменты разделяют запутанные фосфаты на три свободных иона. Они остаются запутанными даже после разделения. Этот процесс, по словам Фишера, проходит быстрее для синглетов. Эти ионы в свою очередь могут комбинироваться с ионами кальция и атомами кислорода и превращаться в молекулы Познера. У кальция и кислорода спина ядра нет, поэтому общий полуцелый спин, критичный для длительной когерентности, сохраняется. Эти кластеры защищают запутанные пары от внешних воздействий, чтобы те могли сохранять когерентность как можно дольше. Фишер оценивает, что это могут быть часы, дни или даже недели. Таким образом запутанность может распространиться на довольно большие расстояния внутри мозга, влияя на выход нейротрансмиттеров и работу синапсов между нейронами – пугающее дальнодействие в версии мозга за работой.

Проверка теории

Исследователи в области квантовой биологии заинтригованы предположением Фишера. Александра Олайа-Кастро [Alexandra Olaya-Castro], физик из Университетского колледжа Лондона, работавшая над квантовым фотосинтезом, называет это «хорошо продуманной гипотезой.

Она не даёт ответов, а лишь открывает вопросы, которые могут привести нас к проверкам отдельных шагов гипотезы».

С ней согласен и химик Оксфордского университета Питер Хоур [Peter Hore], исследующий квантовые эффекты в применении к навигации перелётных птиц.

«Физик-теоретик предлагает нам определённые молекулы, механизмы, и всю технологию того, как они могут влиять на работу мозга,- говорит он. – Это открывает возможности для экспериментальных проверок».

Фишер сейчас как раз и пытается провести экспериментальные проверки. Он потратил творческий отпуск в Стэнфорде, работая с исследователями над воспроизводством исследования от 1986 года с беременными крысами. Он признал, что предварительные результаты получились разочаровывающими, данные не дали достаточного количества информации. Но он считает, что если лучше воспроизвести эксперимент 1986 года, результаты могут быть более убедительными. Фишер подал заявку на получение гранта для проведения более глубоких экспериментов в квантовой химии. Он собрал небольшую группу учёных различных специальностей в своём университете и привлёк учёных из Калифорнийского университета в Сан-Франциско. Во-первых ему хочется разобраться, формирует ли фосфат кальция стабильные молекулы Познера, и могут ли ядерные спины фосфора из этих молекул запутываться на длительные промежутки времени. К этому скептически относятся даже Хоур и Олайа-Кастро, особенно к оценкам Фишера по поводу сроков – сутки и более. «Честно говоря, я думаю, что это весьма маловероятно,- говорит Олайа-Кастро. – Самые длинные временные промежутки, относящиеся к биохимии, и происходящие в мозгу, не больше секунды». (В нейронах информация хранится в течение микросекунд). Хоур называет такую возможность «отдалённой», говоря максимум о секундах. «Это не отвергает всю идею, но мне кажется, что для длительной запутанности потребуются другие молекулы,- говорит он. – Не думаю, что это молекулы Познера. Но мне интересно, как будет развиваться идея». Кое-кто считает, что для работы мозга никаких квантовых процессов вообще не нужно. «Появляются доказательства того, что всё интересное, связанное с сознанием, можно объяснить взаимодействием нейронов»,- поделился с New Scientist Пол Тагард [Paul Thagard], нейрофилософ из Университета Уотерлу в Онтарио. Множество других аспектов гипотезы Фишера также необходимо как следует проверить. Он надеется, что сумеет поставить необходимые для этого эксперименты. Симметрична ли структура молекулы Познера? Насколько ядерные спины изолированы?

Что более важно – а вдруг эти эксперименты докажут, что гипотеза неверна? Тогда, возможно, придётся полностью отказаться от идеи квантового сознания.

«Я считаю, что если ядерный спин фосфора не используется в квантовой обработке данных, тогда квантовая механика вообще не играет роли в работе сознания на длительных промежутках,- говорит Фишер.

— С научной точки зрения это очень важно исключить. Науке будет полезно знать это».

  • 23 января 2018 в 11:58
  • 15 октября 2017 в 16:06
  • 6 декабря 2016 в 14:44

Источник: https://habr.com/post/372875/

Квантовая теория сознания

Квантовая теория сознания
lotos_n

23.03.2012, 20:53:02

Микротрубочки (бирюзовые), актин (лиловый) и ДНК (желтая) в дифференцирующемся нейроне. Фото Dr. Torsten Wittmann/Nikon Small World

Идеолог квантового сознания обнаружил носители памяти

Один из основателей квантовой теории сознания, Стюарт Хамерофф, в своей новой работе заявил, что ему удалось найти носители человеческой памяти — ими оказались микротрубочки нейронов. Хамерофф стал известен после того, как совместно с выдающимся математиком Роджером Пенроузом выдвинул теорию мышления, согласно которой человеческий разум имеет квантовую природу.

Хамерофф так прокомментировал свои результаты: «Многие нейробиологические публикации заканчиваются утверждением о том, что они могут помочь в понимании работы мозга и лечении болезни Альцгеймера, мозговых травм и различных неврологических и психиатрических отклонений. Данная работа действительно сможет это сделать. Мы сможем взглянуть на биомолекулярный код памяти мозга.» Чтобы понять степень обоснованности подобных заявлений, необходимо пояснить несколько вещей, касающихся как самого Хамероффа, так и его теории.

Анестезиолог

Стюарт Хамерофф не совсем типичный биолог, и дело тут не в его оригинальной внешности — порой он напоминает то буддийского гуру, то Джона Лока из сериала Lost. В академическую науку он пришел из практической медицины, на что решаются немногие из хорошо оплачиваемых американских докторов.

Впрочем, с анестезиологией он не порвал и до сих пор успешно совмещает оба занятия в Аризонском университете, что позволяет ему не заботиться о получении грантов. От простых американских анестезиологов его отличает давний и глубокий интерес к двум вещам: к природе человеческого сознания и к микротрубочкам.

Именно благодаря этим интересам о нем заговорил нейробиологический мир.

Стюарт Хамерофф делает транскраниальное УЗИ.Фото с личного сайта Хамероффа.

«Во время летнего факультатива в онкологической лаборатории я увидел, как микротрубочки растаскивают хромосомы в делящихся клетках. Меня страстно заинтересовало, даже загипнотизировало, как эти маленькие устройства узнают, куда направляться и что делать — в чем была их разумность и что управляло этим шоу на цитоплазматическом уровне?» — рассказывал Хамерофф в одном из своих интервью.

Микротрубочки известны как основной компонент цитоскелета. Это арматура, структурные элементы, которые позволяют клеткам животных поддерживать свою форму, а не превращаться в круглую каплю цитоплазмы. Состоят они всего из двух очень похожих белков — альфа- и бета-тубулинов, которые полимеризуются в длинные полые трубки.

Во время деления микротрубочки присоединяются к каждой отдельной хромосоме и растаскивают их в дочерние клетки. Кроме того, они могут работать своеобразными магистралями, по которым проходят грузы из одного конца клетки в другой.

В аксонах и дендритах нервных клеток, где микротрубочек очень много, именно по ним, как по рельсам, происходит транспорт расходующихся медиаторов к синапсам.

Микротрубочки давно заняли свое место в учебниках биологии и редко привлекали внимание тех, кто занимается памятью и другой высшей нервной деятельностью. Но Хамерофф оказался поглощен именно ими.

Когда он обнаружил, что некоторые анестетики влияют на структуру микротрубочек, то решил, что именно этим и объясняется потеря сознания при наркозе (позже выяснилось, что так действуют далеко не все анестетики, но для Стюарта это ничего не меняло).

В 1987 году он написал книгу под названием Ultimate Computing, в которой высказал крайне неожиданное предположение о том, что микротрубочки, помимо своей традиционной функции, могут быть аппаратами вычисления и интегрирования информации в мозге. Он назвал их вычислительными автоматами.

Функции, приписываемые нейронам, нужно было, по мнению Стюарта, искать на субклеточном уровне. Как именно микротрубочки «вычисляют», Хамероффу было не вполне понятно до тех пор, пока он не познакомился с нашумевшей книгой своего будущего коллеги, знаменитого математика Роджера Пенроуза «Новый Ум Короля».

Математик

Роджер Пенроуз на полу, выложенном непериодичной мозаикой его изобретения, в фойе Техасского университета. Фото Wikipedia/Solarflare100

К моменту выхода своей неоднозначной книги Пенроуз, вернее сэр Роджер Пенроуз (в 1994 году за выдающиеся заслуги в развитии науки ему был присвоен рыцарский титул) был одним из самых известных математиков.

На его счету было создание теории твисторов, спиновых сетей, гипотеза «космической цензуры» и многие другие работы как по чистой математике, так и по теории относительности и квантовой гравитации. Над теорией квантовой гравитации он работал совместно со Стивеном Хокингом.

Самую широкую известность среди его чисто математических работ получили непериодические мозаики, или «цыплята Пенроуза», — фигуры, которые могут полностью заполнить плоскость неповторяющимся узором.

К концу восьмидесятых признанный ученый, вооружившись математическими знаниями, обратился к давно интересовавшей его проблеме человеческого сознания и написал популярную книгу, которая сделала его знаменитым среди людей, совершенно не интересующихся математикой, и возбудила шквал дискуссий.

В «Новом Уме Короля» Пенроуз попытался с позиции математической логики доказать, что современные представления о работе мозга требуют кардинального пересмотра.

Вкратце его рассуждения можно описать следующим образом.

Люди, изучающие искусственный интеллект, часто рассматривают мозг как вычислительную машину, некоторые из них даже считают, что в будущем вычислительные машины смогут превзойти по разумности человека.

Пенроуз не верил в истинность подобных заявлений и противопоставил им теорему Гёделя о неполноте. Сильно упрощая, можно сказать, что она утверждает, что всякая формальная система, например компьютер, в некотором смысле неполноценна, то есть не может осознать все высказывания, которые сама же может сформулировать.

Исходя из этого, Пенроуз решил, что искусственный интеллект, если он работает как программа, не сможет ничего «понять» так, как это делает человек. «На мой взгляд, аргумент Гёделя говорит нам, что мы не просто вычислительные машины; что наше понимание — это нечто вне вычислений.

Он не говорит нам, что это нечто нематериальное, однако есть важная вещь, которую мы упускаем, которая имеет отношение к квантовой механике.» — утверждал Пенроуз в интервью Сьюзан Блэкмор.

Раз человек мыслит иначе, чем компьютер, следовательно, человеческому сознанию присущ некий компонент, который, по мнению Пенроуза, должен обладать квантовыми свойствами. Математик не стал утверждать, в каких структурах он присутствует.

Немногие ученые, привыкшие к старым добрым нейронам и синапсам, приняли гипотезу Пенроуза серьезно. Однако среди них оказался Стюарт Хамерофф. Он убедил Пенроуза, что носителем квантовых свойств должны быть микротрубочки.

По мнению Хамероффа, упорядоченная и протяженная структура микротрубочек наделяет их способностью сохранять квантовые состояния длительное время.

Фактически, по предположению ученых, эти компоненты цитоскелета (которые, вообще-то есть в каждой клетке организма) в нейронах мозга работают, ни больше ни меньше, квантовыми компьютерами.

Последующие годы Хамерофф и Пенроуз посвятили разработке совместной «Нейрокомпьютерной модели сознания Orch OR». Каждый из них написал по новой книге на эту тему.

Была организована междисциплинарная конференция «На пути к науке о сознании» в Тусоне (Аризона), на которой выступали философы, физики, нейробиологи и математики. К чести организаторов, среди выступающих было много их ярых критиков.

Даже скептики признавали важность этой конференции для всей области исследований сознания. Сторонники квантового сознания опубликовали большое количество статей, в том числе и в рецензируемых биологических журналах.

С момента выхода «Нового Ума Короля» Пенроуз написал еще несколько книг, касающихся, наряду с квантовым сознанием, и других физических теорий. В отличие от Хамерофа, Пенроуз никогда не настаивал на микротрубочках, как на единственном кандидате в квантовые компьютеры мозга.

Стюарт, напротив, неоднократно пытался показать, что именно микротрубочки должны играть в мозге совершенно особую роль, если и не в формировании сознания, то в чем-то еще.

Чтобы добыть этому разнообразные экспериментальные подтверждения, он привлекал к совместной работе других соавторов.

В своей последней статье он, совместно с Джеком Тыжинским и его аспирантом Тревисом Креддоком, обратился к проблеме памяти.

Фермент памяти

В работе утверждается, что именно микротрубочки могут быть ее главным хранилищем в нейронах. Статья прошла рецензирование коллегами и была опубликована 8 марта 2012 года в достаточно авторитетном журнале PLoS Computational Science.

Модель взаимодействия фермента CaMKII с микротрубочкой. Изображение из статьи авторов.

Исследователи обратились к тем процессам, которые происходят в нейронах после активации и должны быть как-то связаны с запоминанием. Известно, что во время разряда в нейрон поступают ионы кальция, которые могут активировать кальций-зависимые ферменты.

Авторы, используя известные кусочки структуры, создали компьютерную модель комплекса CaMKII.

Это содержащийся в нейронах кальций-зависимый фермент, способный модифицировать различные белки путем навешивания на них фосфатных меток.

Такая модификация часто меняет структуру белка или его взаимодействие с партнерами, поэтому часто используется клетками при передаче сигналов от белка к белку в сигнальных каскадах.

Полученная структурная модель фермента напоминала шестилучевую снежинку, каждый из лучей которой несет активный центр, умеющий навешивать фосфатные метки. Получив модель CaMKII, исследователи сопоставили ее со структурой микротрубочек и решили, что фермент отлично подходит для их мечения.

На поверхности микротрубочки комплекс располагается так, что может пометить кластер из шести близлежащих белков-тубулинов. Поскольку каждый белок может находиться в меченой или исходной форме, авторы статьи посчитали, что этим кодируется один бит информации.

Кластер из шести белков, по их словам, в таком случае является «байтом». Исследователи даже подсчитали, сколько кодируется информации и сколько расходуется энергии при единичном взаимодействии CaMKII и микротрубочки.

Полученные цифры говорили об очень хорошей энергетической эффективности и информационной емкости, гораздо большей, чем та, которую нейробиологи приписывают синапсам.

Как именно информация, закодированная в виде фосфорилирования микротрубочек, может подниматься с субклеточного уровня на уровень нейронов и, в конечном счете, превращаться в воспоминания, авторы в статье подробно не объяснили. Они предполагают, что фосфорилирование может влиять на транспорт по микротрубочкам, распространяться волнами по нейрону, влиять на рост дендритов и так далее.

Здоровый скептицизм

Сложно сказать, воспримет ли научное сообщество серьезно последнюю работу Хамероффа и коллег. в достаточно авторитетном журнале, а значит должна была пройти хотя бы минимальное рецензирование коллегами-учеными. Тем не менее, большинство нейробиологов очень критически относятся к идеям Хамероффа и Пенроуза.

Их совместное детище — гипотезу квантового сознания, коллеги критиковали и в статьях в Science, и на научных конференциях, и (особенно яростно) на их собственных лекциях.

Аргументы противников варьировали от подробного обоснования невозможности влияния квантовых эффектов на макроскопические процессы в мозгу, до утверждений о том, что Хамерофф с Пенроузом пытаются одну загадочную вещь — сознание — объяснить с помощью другой загадочной вещи — квантовой теории.

Но необходимо понимать, что эта критика касалась только той части их совместной теории, которая говорит о сознании. Современная нейробиология пока действительно очень мало знает о его природе.

В последней работе Хамерофф, уже без поддержки Пенроуза, ступил на гораздо более исследованную учеными территорию, касающуюся механизмов памяти. Здесь в последнее время происходит беспрецедентное продвижение исследований.

Нейробиологи открывают принципы работы генов, важных для запоминания, их взаимодействие, роль синтеза белков и некодирующих РНК в этом процессе.

Некоторые исследователи даже предлагают способы стирать нежелательные воспоминания, основанные на специфическом ингибировании образования важных для памяти белков (подробно про это можно почитать, например, здесь). В общем, область перешла в фазу взрывного роста.

Почему-то кажется, что на этот раз «революционная» работа в сфере, где уже так много надежных экспериментальных данных, не вызовет такой же бури обсуждений, как это было с первой книгой Пенроуза. Скорее всего, ее просто проигнорируют.

Александр Ершов

Серия сообщений «Реперные точки повседневности»:Решающие моменты настоящего, определяющие развитие будущего Часть 1 — Протесты в Нью-Йорке
Часть 2 — Памяти Стива Джобса…

Часть 4 — Даг Кейси о закате Америки и том когда сматывать удочки (Кейси, Даглас «Даг» )

Часть 5 — Солнечная система «сбрасывает скорость»Часть 6 — Квантовая теория сознания

Оригинал записи и комментарии на LiveInternet.ru

Источник: https://lotos-n.livejournal.com/30832.html

Квантовая теория человеческого сознания Пенроуза ≪ Scisne?

Квантовая теория сознания
Физик Роджер Пенроуз (Roger Penrose) из Оксфордского университета (Великобритания) и анестезиолог Стюарт Хамерофф (Stuart Hameroff) из Аризонского университета (США) довольно давно представили теорию о том, что наше сознание суть квантовый компьютер.

Только не те экспериментальные установки, которые иногда помогают в решении отдельных Google-задач, а полноценные «сильные» версии квантовых компьютеров, о создании которых человечество пока лишь мечтает: Если верить названным учёным, в нашем мозгу используется несколько полезнейших особенностей квантовомеханических процессов — к примеру, способность одной частицы находиться сразу в двух местах.

В середине июня г-да Пенроуз и Хамерофф в очередной раз выступали с подобными идеями — на сей раз на международном конгрессе «Глобальное будущее-2045», который проходил в Нью-Йорке (США).

Теория Пенрозуа однозначна: наше сознание — продукт деятельности квантового компьютера, которым с рождения оснащён каждый человек. Однако D-Wave вроде бы не спешит раздавать свои акции безработным на улицах… Может быть, физик всё-таки неправ? (Илл. Shutterstock.)

Один из основных их аргументов выглядит относительно убедительно. Широко известная теорема Гёделя о неполноте ясно показывает: формальная арифметика принципиально ограничена. Более того, ограничена всякая формальная система, в которой можно определить натуральные числа, 0, 1 и пр. базисные понятия того же ряда. Первая теорема Гёделя делает вывод: если формальная арифметика непротиворечива, то в ней существует невыводимая и неопровержимая формула, а вторая постулирует следующее: если формальная арифметика непротиворечива, то в ней невыводима некоторая формула, содержательно утверждающая непротиворечивость этой арифметики. Из этого вытекают важные последствия для расчётов, выполняемых с помощью обычных компьютеров и базирующихся на тех же понятиях, что и формальная арифметика. Однако, замечает г-н Пенроуз, на практике человеческие математики способны доказывать то, что, согласно теореме Гёделя, не должны решать системы компьютерного вида. Вывод физика прост: это прямо указывает на построение человеческого мозга на принципах, далеко отстоящих от тех, что используются в компьютерах. И поскольку нам неизвестны другие принципы вычислений, кроме классических — заложенных в обычные ЭВМ, и квантовых — предположительно, заложенных в квантовые компьютеры D-Wave, то напрашивается такая мысль: наш мозг основывает свои расчёты на квантовой механике. Что в этой теории хорошо? Главное её преимущество в том, что ни один специалист по человеческому мозгу пока не предложил ни одного удовлетворительного объяснения сознания — состояния, при котором субъект сознает себя и способен мыслить. Очевидно, идея г-на Пенроуза на этом скудном теоретическом фоне кажется по крайней мере теорией, достойной рассмотрения.

И тут мы подходим к тому, чем эта концепция плоха.

В самом деле, почему это направление мысли считают маргинальным, хотя сам Роджер Пенроуз, без сомнения, физик выдающийся? Всё просто: он не объясняет, не будучи «специалистом по мозгу», какие конкретно механизмы отвечают за квантовые вычисления в реальном мозгу человека.

Стюарт Хамеррофф после ознакомления с теорией предположил, что возможность мозговых квантовых вычислений могут обеспечивать маленькие волокнистые структуры, известные как микротрубочки, входящие в цитоскелет клеток (в том числе аксонов).

Микротрубочки состоят из единиц протеина, известного как тубулин. В определённых районах этого белка электроны начинают «кружиться» очень близко друг к другу.

Согласно предположениям г-на Хамероффа, в этой точке электроны могут стать квантово запутанными, после чего даже в случае пространственного разделения действие, происходящее с одним из электронов, может повлиять на другой.

В этой ситуации возникновение и исчезновение квантовой когерентности может быть как-то связано с динамической нестабильностью микротрубочек, которые то полимеризуются, то деполимеризуются, причём делают это постоянно, никогда не пребывая в одном устойчивом состоянии.

При этом микротрубочки в одном нейроне могут быть связаны с аналогичными объектами в другом нейроне посредством щелевых контактов — способа соединения клеток при помощи белковых каналов, коннексонов. Последние обеспечивают электрическое соединение двух клеток, а также перенос между ними небольших молекул.

Тем не менее, с точки зрения физического мейнстрима, всё предлагаемое г-ном Хамероффом в части реализации квантовых вычислений в нашей голове — ненаучная фантастика. Наши нынешние квантовые компьютеры предельно чувствительны к шуму. Чтобы минимизировать его, нужно изолировать систему и охладить её почти до абсолютного нуля, дабы тепло не порождало колебания атомов и не генерировало тем самым шумы. Это делает картину квантовых вычислений в таком тёплом и влажном месте, как человеческий мозг, нереалистичной, уверена основная масса физиков. И даже не пытайтесь спрашивать о том, уверены ли они, что для квантовых состояний нет каких-то особых условий, в которых они могут оставаться когерентными, несмотря на шум, порождаемый высокой температурой. Их ответ будет краток: экспериментальных подтверждений таким процессам нет. В принципе, квантовые состояния в мозгу всё же возможны, но основная часть научного мира полагает, что они существуют там слишком короткое время, чтобы на этой основе можно было производить какие-то умственные операции.

β-тубулин, из которого состоят микротрубочки в нейронах нашего мозга, на самом деле встречается не только в растениях. Даже несчастные прокариоты имеют гомологичный протеин FtsZ! На снимке — тубулин в тетрахимене, пресноводной инфузории. (Фото Pawel Jasnos.)

Другой элемент критического восприятия теории Пенроуза родом из исследований мозга. Модель г-на Хамероффа утверждает, что микротрубочки обеспечивают нам квантовое сознание. Но дело в том, что микротрубочки пришли к животным не с Луны. И встречаются даже в растениях, которые, как острит Бернард Баарс (Bernard Baars), возглавляющий Общество наук по изучению мозга, «насколько нам известно, лишены сознания». Здесь, правда, стоит напомнить, что относительно недавно выяснилось, что и растения в прямом смысле слова живут за счёт квантовомеханических процессов… И всё же как раз врачи встречают идею не совсем в штыки. «Если кто-то проведёт эксперимент — один единственный эксперимент, — говорит Бернард Баарс, — то я отброшу весь свой скептицизм». Физики, само собой, настроены резче, примерно как Резерфорд в 1933 году, оценивая перспективы получения энергии от деления атома. Помните? Интересно, прояснится ли настолько же ситуация с квантовым сознанием за ближайшие 12 лет?

Подготовлено по материалам LiveScience. Изображение на заставке принадлежит Shutterstock.

Александр Березин 28 июня 2013 года

«Компьюлента»

Источник: https://scisne.net/a-997

Booksm
Добавить комментарий