Криволинейное движение

2.6. Ускорение при криволинейном движении

Криволинейное движение

Представим себе материальную точку, движущуюся по некоторой криволинейной траектории . Запишем скорость в виде

и заметим, что вектор

— это единичный вектор, касательный к траектории и совпадающий по направлению с вектором скорости. Продифференцируем вектор скорости, записанный в данном представлении, и получим

Мы представили ускорение в виде двух слагаемых. Заметим прежде всего, что слагаемые ортогональны друг другу. Действительно, поскольку вектор — единичный, то

Дифференцируя это скалярное произведение, получаем

то есть

по свойству скалярного произведения.

Таким образом, мы разложили ускорение на сумму двух взаимно ортогональных составляющих, обозначем их и :

Обсудим физический смысл каждого слагаемого. Слагаемое

— это тангенциальное ускорение, которое характеризует быстроту изменения модуля скорости.

Эта часть полного ускорения направлена либо по скорости, когда производная dv/dt > 0, то есть движение ускоренное, либо в сторону противоположную скорости, когда эта производная dv/dt < 0, то есть движение замедленное.

Если движение равномерное dv/dt = 0, то есть скорость, если и меняется, то лишь по направлению, то тангенциальная часть ускорения равна нулю:

Слагаемое

направлено по нормали к траектории — перпендикулярно касательной к траектории и называется нормальным ускорением. Если тангенциальное ускорение определяет скорость, с которой меняется модуль вектора скорости, то нормальное ускорение определяет скорость, с которой меняется направление вектора скорости.

Рис. 2.10. К определению кривизны траектории

Рассмотрим «достаточно гладкую», в остальном произвольную плоскую криволинейную траекторию.

Плоскую, то есть все точки траектории лежат в некоторой плоскости, — исключительно для упрощения выкладок, получаемый в рамках этого предположения, результат годится и для любой «достаточно гладкой» пространственной кривой, чьи точки уложить в одну плоскость невозможно.

Последнее обстоятельство мы здесь рассматривать не будем, оно строго доказывается методами аналитической геометрии. Слова «достаточно гладкая» означают, что кривая описывается непрерывной функцией, имеющей непрерывные первую и вторую производные.

С точки зрения физических приложений, требование существования непрерывных первых двух производных фактически не является ограничением на форму траектории, так как практически всегда выполнено. Проще говоря, на траектории не должно быть «углов» типа показанного на рисунке 2.11.

Рис. 2.11.

Такую «гладкую» кривую на любом её бесконечно малом участке можно заменить (рис. 2.12) участком окружности некоторого радиуса.

Радиус этой окружности, аппроксимирующей траекторию на её бесконечно малом участке в окрестности некоторой точки, принято называть радиусом кривизны траектории в этой точке. Центр этой окружности принято называть центром кривизны траектории в данной точке.

Кривизной траектории называется величина C = 1/R. Подчеркнем, что радиус кривизны, как и центр кривизны траектории — её локальные характеристика: каждой точке траектории соответствует свой радиус кривизны и свой центр кривизны.

Исключениями являются: 1) окружность, её радиус кривизны во всех её точках один и тот же и равен радиусу окружности, центр кривизны «один на всех» и совпадает с центром окружности, и 2) прямая, для любой точки прямой радиус кривизны бесконечен, а центр кривизны находится в бесконечно удаленной от прямой точке. Это легко понять: давайте увеличивать радиус окружности, чем больше радиус окружности, тем ближе любой её конечный участок к участку прямой. На равнине, лучше всего на пляже, с высоты человеческого роста до горизонта не более пяти километров, — в этих пределах Земля плоская.

Рис. 2.12. К определению радиуса кривизны траектории

Вычислим модуль производной , входящей в выражение для нормального ускорения. Направлен вектор по нормали к траектории к центру к центру кривизны, что поясняет рис. 2.13.

Рис. 2.13. Графическое определение радиуса кривизны траектории

Для этого прежде всего перейдем от дифференцирования по времени к дифференцированию по «пути»: , имеем:

По определению производная кривизне кривой C, а величина ей обратная равна радиусу кривизны кривой R. Собирая всё вместе, для нормального ускорения окончательно получаем:

,

где нормаль перпендикулярна к касательной и всегда направлена к центру кривизны, см. рис. 11.

Приведем некоторое дополнительное пояснение к рисунку 11. Возьмем неподалеку от точки 1 точку 2. Построим в этих точках касательные единичные векторы 1 и 2. Перпендикуляры к этим касательным пересекутся в некоторой точке O2.

Заметим, что для кривой, не являющейся окружностью, расстояния R1 и R2 будут немного отличаться друг от друга. Если теперь точку 2 приближать к точке 1, пересечение перпендикуляров O2 будет перемещаться вдоль прямой O21 и в пределе окажется в некоторой точке O1.

Расстояния R1 и R2 будут стремиться к общему пределу R, равному радиусу кривизны, а точка O1 и будет центром кривизны для точки 1. Действительно, окружность радиусом R с центром в 0 проходит через точку 1 и касается траектории (так как радиус ортогонален орту 1).

Кроме того, по построению бесконечно близкая точка 2 также лежит на этой окружности. Таким образом, построенная окружность действительно «сливается» с траекторией в точке 1.

Итак, в общем случае ускорение имеет две составляющие — тангенциальную

направленную вдоль касательной и определяющую скорость изменения модуля вектора скорости нормальную

направленную перпендикулярно скорости к центру кривизны траектории и пропорциональную угловой скорости вращения вектора скорости при движении частицы вдоль криволинейной траектории (рис. 2.14).

Рис. 2.14. Тангенциальное и нормальное ускорения при ускоренном криволинейном движении.

Действительно , где и есть угловая скорость вращения вектора скорости .

Полное ускорение

определяется по правилу параллелограмма. Модуль полного ускорения в соответствии с теоремой Пифагора равен

Выпишем без вывода формулы, связывающие радиус кривизны плоской траектории с координатами траектории. Если известна зависимость y = y(x), то

Если же траектория задана в параметрическом виде, x = x(t), y = y(t), то

Пример криволинейного движения с постоянным ускорением (тело, брошенное под углом к горизонту) приведен на следующем рисунке:

Рис. 2.15. Движение тела, брошенного под углом к горизонту

Источник: https://online.mephi.ru/courses/physics/osnovi_mehaniki/data/lecture/2/p6.html

Криволинейное движение

Криволинейное движение

При криволинейном движении у вектора скорости изменяется направление. При этом может меняться и его модуль, т. е. длина.

В этом случае вектор ускорения раскладывается на две составляющие: касательную к траектории и перпендикулярную к траектории (рис. 10).

Составляющая называется тангенциальным (касательным) ускорением, составляющая –нормальным(центростремительным) ускорением.

Рис. 10.

Ускорение при криволинейном движении

Тангенциальное ускорение характеризует быстроту изменения линейной скорости, а нормальное ускорение характеризует быстроту изменения направления движения.

Полное ускорение равно векторной сумме тангенциального и нормального ускорений:

(15)

Модуль полного ускорения равен:

.

Рассмотрим равномерное движение точки по окружности. При этом и . Пусть в рассматриваемый момент времени t точка находится в положении 1 (рис. 11). Спустя время Δt точка окажется в положении 2, пройдя путь Δs, равный дуге 1—2.

При этом скорость точки v получает приращение Δv, в результате чего вектор скорости, оставаясь неизменным по величине, повернется на угол Δφ, совпадающий по величине с центральным углом, опирающимся на дугу длиной Δs:

(16)

где R—радиус окружности, по которой движется точка. Найдем приращение вектора скорости Для этого перенесем вектор так, чтобы его начало совпадало с началом вектора .

Тогда вектор изобразится отрезком, проведенным из конца вектора в конец вектора . Этот отрезок служит основанием равнобедренного треугольника со сторонами и и углом Δφ при вершине.

Если угол Δφ невелик (что выполняется для малых Δt), для сторон этого треугольника можно приближенно написать:

.

Подставляя сюда Δφ из (16), получаем выражение для модуля вектора :

.

Разделив обе части уравнения на Δt и сделав предельный переход, получим величину центростремительного ускорения:

. (17)

Здесь величины v и R постоянные, поэтому их можно вынести за знак предела. Предел отношения – это модуль скорости Его также называют линейной скоростью.

Рис. 11.

Радиус кривизны

Радиус окружности R называется радиусом кривизны траектории. Величина, обратная R, называется кривизной траектории:

.

где R — радиус рассматриваемой окружности. Если α есть центральный угол, соответствующий дуге окружности s, то, как известно, между R, α и s имеет место соотношение:

s = Rα. (18)

Понятие радиуса кривизны применимо не только к окружности, но и любой кривой линии. Радиус кривизны (или обратная ему величина – кривизна) характеризует степень изогнутости линии. Чем меньше радиус кривизны (соответственно, чем больше кривизна), тем сильнее изогнута линия. Рассмотрим это понятие подробнее.

Кругом кривизны плоской линии в некоторой точке A называется предельное положение окружности, проходящей через точку А и две другие точки В1 и В2 при их бесконечном приближении к точке А (на рис.

12 кривая проведена сплошной линией, а круг кривизны — пунктирной).

Радиус круга кривизны дает радиус кривизны рассматриваемой кривой в точке A, а центр этого круга — центр кривизны кривой для той же точки А.

Проведем в точках B1 и В2 касательные B1D и В2Е к окружности, проходящей через точки В1, А и B2. Нормали к этим касательным B1С и В2С представят собой радиусы R окружности и пересекутся в ее центре С. Введем угол Δα между нормалями В1С и В2С; очевидно, он равен углу между касательными В1D и В2E. Обозначим участок кривой между точками B1 и В2 как Δs. Тогда по формуле (18):

.

Рис. 12.

Круг кривизны плоской кривой линии

Рис. 13.

Определение кривизны плоской кривой в разных точках

На рис. 13 изображены круги кривизны плоской линии в разных точках. В точке A1, где кривая является более пологой, радиус кривизны больше, чем в точке A2, соответственно, кривизна линии в точке A1 будет меньше, чем в точке A2.

В точке A3 кривая является еще более пологой, чем в точках A1 и A2, поэтому радиус кривизны в этой точке будет больше, а кривизна меньше. Кроме того, круг кривизны в точке A3 лежит по другую сторону кривой.

Поэтому величине кривизны в этой точке приписывают знак, противоположный знаку кривизны в точках A1 и A2: если кривизну в точках A1 и A2 будем считать положительной, то кривизна в точке A3 будет отрицательной.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/5_66367_krivolineynoe-dvizhenie.html

Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью. урок. Физика 9 Класс

Криволинейное движение

На предыдущем уроке мы рассмотрели вопросы, связанные с законом всемирного тяготения. Тема сегодняшнего урока тесно связана с этим законом, мы обратимся к равномерному движению тела по окружности.

Ранее мы говорили, что движение – это изменение положения тела в пространстве относительно других тел с течением времени. Движение и направление движения характеризуются в том числе и скоростью. Изменение скорости и сам вид движения связаны с действием силы. Если на тело действует сила, то тело изменяет свою скорость.

Если сила направлена параллельно движению тела, то такое движение будет прямолинейным (рис. 1).

Рис. 1. Прямолинейное движение

Криволинейным будет такое движение, когда скорость тела и сила, приложенная к этому телу, направлены друг относительно друга под некоторым углом (рис. 2). В этом случае скорость будет изменять свое направление.

Рис. 2. Криволинейное движение

Итак, при прямолинейном движении вектор скорости направлен в ту же сторону, что и сила, приложенная к телу. А криволинейным движением является такое движение, когда вектор скорости и сила, приложенная к телу, расположены под некоторым углом друг к другу.

Рассмотрим частный случай криволинейного движения, когда тело движется по окружности с постоянной по модулю скоростью.

Когда тело движется по окружности с постоянной скоростью, то меняется только направление скорости. По модулю она остается постоянной, а направление скорости изменяется.

Такое изменение скорости приводит к наличию у тела ускорения, которое называется центростремительным.

Рис. 6. Движение по криволинейной траектории

Если траектория движения тела является кривой, то ее можно представить как совокупность движений по дугам окружностей, как это изображено на рис. 6.

Рис. 7. Направление скорости при криволинейном движении

На рис. 7 показано, как изменяется направление вектора скорости. Скорость при таком движении направлена по касательной к окружности, по дуге которой движется тело. Таким образом, ее направление непрерывно меняется. Даже если скорость по модулю остается величиной постоянной, изменение скорости приводит к появлению ускорения:

В данном случае ускорение будет направлено к центру окружности. Поэтому оно называется центростремительным.

Почему центростремительное ускорение направлено к центру?

Вспомним, что если тело движется по криволинейной траектории, то его скорость направлена по касательной. Скорость является векторной величиной. У вектора есть численное значение и направление. Скорость по мере движения тела непрерывно меняет свое направление. То есть разность скоростей в различные моменты времени не будет равна нулю (), в отличие от прямолинейного равномерного движения.

Итак, у нас есть изменение скорости  за какой-то промежуток времени . Отношение  к  – это ускорение. Мы приходим к выводу, что, даже если скорость не меняется по модулю, у тела, совершающего равномерное движение по окружности, есть ускорение.

Куда же направлено данное ускорение? Рассмотрим рис. 3. Некоторое тело движется криволинейно (по дуге). Скорость тела в точках 1 и 2 направлена по касательной. Тело движется равномерно, то есть модули скоростей равны: , но направления скоростей не совпадают.

Рис. 3. Движение тела по окружности

Вычтем из  скорость  и получим вектор . Для этого необходимо соединить начала обоих векторов. Параллельно перенесем вектор в начало вектора . Достраиваем до треугольника. Третья сторона треугольника будет вектором разности скоростей (рис. 4).

Рис. 4. Вектор разности скоростей

Вектор  направлен в сторону окружности.

Рассмотрим треугольник, образованный векторами скоростей и вектором разности (рис. 5).

Рис. 5. Треугольник, образованный векторами скоростей

Данный треугольник является равнобедренным (модули скоростей равны). Значит, углы при основании равны. Запишем равенство для суммы углов треугольника:

Выясним, куда направлено ускорение в данной точке траектории. Для этого начнем приближать точку 2 к точке 1. При таком неограниченном прилежании угол  будет стремиться к 0, а угол  – к .

Угол между вектором изменения скорости и вектором самой скорости составляет . Скорость направлена по касательной, а вектор изменения скорости направлен к центру окружности. Значит, ускорение тоже направлено к центру окружности  .

Именно поэтому данное ускорение носит название центростремительное.

Рассчитать центростремительное ускорение можно по следующей формуле: .

Как найти центростремительное ускорение?

Рассмотрим траекторию, по которой движется тело. В данном случае это дуга окружности (рис. 8).

Рис. 8. Движение тела по окружности

На рисунке представлены два треугольника: треугольник, образованный скоростями, и треугольник, образованный радиусами и вектором перемещения.

Если точки 1 и 2 очень близки, то вектор перемещения будет совпадать с вектором пути. Оба треугольника являются равнобедренными с одинаковыми углами  при вершине. Таким образом, треугольники подобны.

Это значит, что соответствующие стороны треугольников относятся одинаково:

Перемещение равно произведению скорости на время:  . Подставив данную формулу, можно получить следующее выражение для центростремительного ускорения:

Угловая скорость обозначается греческой буквой омега (ω), она говорит о том, на какой угол поворачивается тело за единицу времени (рис. 9). Это величина дуги в градусной мере, пройденной телом за некоторое время.

Рис. 9. Угловая скорость

Обратим внимание, что если твердое тело вращается, то угловая скорость для любых точек на этом теле будет величиной постоянной. Ближе точка располагается к центру вращения или дальше – это не важно, т. е. от радиуса не зависит.

Единицей измерения в этом случае будет либо градус в секунду (), либо радиан в секунду (). Часто слово «радиан» не пишут, а пишут просто . Для примера найдем, чему равна угловая скорость Земли. Земля делает полный поворот на  за  ч, и в этом случае можно говорить о том, что угловая скорость равна:

Также обратите внимание на взаимосвязь угловой и линейной скоростей:

Линейная скорость прямо пропорциональна радиусу. Чем больше радиус, тем больше линейная скорость. Тем самым, удаляясь от центра вращения, мы увеличиваем свою линейную скорость.

Необходимо отметить, что движение по окружности с постоянной скоростью – это частный случай движения. Однако движение по окружности может быть и неравномерным.

Скорость может изменяться не только по направлению и оставаться одинаковой по модулю, но и меняться по своему значению, т. е., кроме изменения направления, существует еще изменение модуля скорости.

В этом случае мы говорим о так называемом ускоренном движении по окружности.

Что такое радиан?

Существует две единицы измерения углов: градусы и радианы. В физике, как правило, радианная мера угла является основной.

Построим центральный угол , который опирается на дугу длиной .

Рис. 10. Центральный угол

Очевидно, что при увеличении угла будет увеличиваться и дуга. Построим такой угол , для которого длина дуги будет в точности равна радиусу. Тогда принято говорить, что угол . 1 радиан – это такой угол, который опирается на дугу, длина которой равна радиусу.

Как между собой связаны градусная и радианная меры угла? Из определения радианной меры угла можно записать выражение:

Длина всей окружности вычисляется по формуле:

Центральный угол равен , если дуга равна длине всей окружности.

Следовательно:

Тогда 1 радиан равен:

С помощью радианной меры угла легко работать с кинематическими характеристиками вращательного и колебательного движения.

Например, угловая скорость:

Важно помнить алгоритм перехода от градусной меры к радианной:

Список литературы

  1. Соколович Ю.А., Богданова Г.С. Физика: Справочник с примерами решения задач. – 2-е издание, передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
  2. Перышкин А.В., Гутник Е.М. Физика. 9 кл.: учебник для общеобразоват. учреждений / А.В. Перышкин, Е.М. Гутник. – 14-е изд., стереотип. – М.: Дрофа, 2009. – 300.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «eduspb.com» (Источник)
  2. Интернет-портал «physbook.ru» (Источник)
  3. Интернет-портал «vip8082p.vip8081p.beget.tech» (Источник)
  4. Интернет-портал «eduspb.com» (Источник)

Домашнее задание

  1. Определите центростремительное ускорение велосипедиста, движущегося по закруглению радиусом  25 м со скоростью 30 км/ч? Как направлено центростремительное ускорение?
  2. Колесо делает один полный оборот за 2 с. Определите, какую скорость имеет точка на ободе, если радиус колеса  равен 50 см?
  3. С какой скоростью должен пройти автомобиль середину выпуклого моста (радиус моста 20 м), чтоб его центростремительное ускорение было на  меньше, чем ускорение свободного падения?

Источник: https://interneturok.ru/lesson/physics/9-klass/zakony-vzaimodejstviya-i-dvizheniya-tel/pryamolineynoe-i-krivolineynoe-dvizhenie-dvizhenie-tela-po-okruzhnosti-s-postoyannoy-po-modulyu-skorostyu

Криволинейное движение — общая характеристика, формулы и примеры

Криволинейное движение

В физике даётся вполне однозначное определение движению. Под ним понимают изменение положения физической точки в пространстве по отношению с другими объектами. Считается, что любое тело состоит из совокупности точек, перемещающихся одинаково по отношению друг к другу. Поэтому любой объект принято обозначать в виде элементарной точки.

Кинематика не изучает, почему движение таково, а рассматривает только путь перемещения. С точки зрения физики, криволинейное движение — это путь, пройденный материальной точкой по кривой траектории. Если же траектория прямая, то изменение положения называется прямолинейным.

Криволинейное движение — это всегда ускоренное перемещение. Оно может быть:

  • Равномерным. В этом случае скорость перемещения по модулю остаётся постоянной на всём прошедшем расстоянии. Например, движение по окружности.
  • Равноускоренным. Признаком такого движения является изменение скорости и направления. Например, брошенное тело под углом.

Основной характеристикой понятия является вектор перемещения. Обозначается он латинской буквой S со стрелочкой вверху. Направлен он всегда по хорде. Кроме вектора, передвижение по кривой линии определяется тангенциальным и нормальным ускорением.

В первом случае характеристика обозначает изменение величины скорости в единицу времени: at = lim Δv / Δt, где: v — начальная скорость в момент времени t0 + Δt. Тангенциальное ускорение может как совпадать по направлению со скоростью, так и быть ей противоположной.

Нормальным ускорением называют характеристику, перпендикулярную направлению скорости: an = V2 / r, где: r — радиус окружности. Оно всегда совпадает с радиусом кривизны пути. Подвидом такого ускорения является центростремительная сила. Проявляется она при равномерном перемещении по окружности.

Таким образом, если движение является криволинейным, то вектора скорости и ускорения не лежат на одной прямой. Из простых примеров криволинейного движения можно выделить: течение воды в реке, перелёт на самолёте, катание на колесе обозрения.

Центростремительное ускорение

Если движение равномерное, но происходит оно по кривой, всё равно будет фиксироваться ускорение точки. Это происходит из-за того, что ускорение определяется как изменение скорости к промежутку времени.

Поэтому если точка движется равномерно, то это значит, что модуль скорости остаётся одинаковым, но направление вектора изменяется. То есть будет справедливо записать: v = v0, но v ≠ v0.

Можно сделать вывод, что изменение скорости существует, если Δv ≠ 0, при этом ускорение тоже не равно нулю: a ≠ 0.

Рассмотрим самый простой вид криволинейного перемещения. Существует история, что ещё во времена Аристотеля древние греки считали окружность идеальной линией. Из-за этого исторического факта астрономам приходилось объяснять движение планет, как комбинацию перемещений космических тел по окружности.

Можно представить тело, изменяющее своё положение по окружности. Траектория перемещения в декартовой системе координат будет выглядеть в виде полусферы. Пусть за её центр будет принята точка O. Тело движется равномерно. В какой-то момент времени его скорость будет V0.

Её вектор направлен по касательной и совпадает по направлению с перемещением тела. Через некоторое время объект переместится в другую точку. Его скорость по-прежнему останется направленной по касательной, при этом модуль не изменится.

То есть V = V0, но вектора их неравны: V ≠ V0.

Пусть стоит задача — найти равномерное движение по окружности. Иными словами, определить направление вектора и вычислить его модуль. В первую очередь необходимо узнать, куда же направлен вектор ускорения. Чтобы ответить на этот вопрос, нужно опираться на исходную формулу: a = Δv / Δt. Отсюда можно сделать вывод, что куда будет направлен вектор V, туда будет направлено и ускорение a.

Для наглядности можно построить вектор изменения скорости частицы, движущейся по рассматриваемой траектории.

Чтобы построить график, описывающий ситуацию, нужно перенести V0 параллельно вектору V к его началу. Соединив два свободных конца перпендикуляром, получится треугольник.

По правилу вычитания векторов можно получить вектор изменения скорости: Δv = V — V0. Направлен он будет сверху вниз.

Так как V0 направлен по касательной перпендикулярно радиусу, при этом угол треугольника при основании стремится к нулю, можно утверждать, что Δv перпендикулярен V. Значит, и вектор ускорения перпендикулярен V. Отсюда следует, что вектор ускорения направлен к центру окружности, поэтому его и называют центростремительным ускорением.

Движение по произвольной кривой

Рассмотрим простейший случай равномерного перемещения. Можно представить ситуацию, что если руль автомобиля держать неподвижно, то он будет ехать по прямой или по окружности.

В реальной ситуации при езде всё время приходится поворачивать руль автомобиля, то есть в каждый момент времени происходит перемещение по окружности. При этом с каждым поворотом колеса управления радиус окружности изменяется.

В данный момент времени он всегда совпадает с траекторией движения и называется радиусом кривизны траектории.

На графике движения можно отметить несколько точек. В одной из них скорость будет равняться V1. Немного дальше пройденное расстояние изменится, но скорость останется той же. Поменяется и направление V2. Через определённое время скорость будет равняться V3. Это движение равномерное.

Относительно точки V1 можно построить касающуюся её окружность с центром r1. По аналогии движения за рулём, это то же самое, что в рассматриваемой точке зафиксировать поворот управления на постоянный угол. Для V2 центр радиуса находится в точке r2, а V3 в r3.

В любом из этих трёх случаев происходит движение по окружности. То есть криволинейное движение произвольной формы — это перемещение по окружности любого радиуса. Если же радиус изменяется, то в любой момент меняется и центростремительное ускорение.

Но при этом направление всегда совпадает с радиусом. Самое большое ускорение будет в том месте, где радиус самый маленький, и наоборот. Таким образом можно утверждать, что всякий раз ускорение будет перпендикулярно скорости при равномерном движении.

Кроме центростремительного ускорения, важными характеристиками, описывающими движение, являются следующие величины:

  • Период. Показывает, за сколько времени точка совершит один оборот: T = t /n. Где t — время, за которое происходит определённое число оборотов, равное n.
  • Частота. Определяет, сколько оборотов совершенно за единицу времени: λ = n / t.
  • Угловая скорость. Является отношением угла поворота радиуса ко времени, за который произошёл поворот: W = φ / Δt = 2 * p / T = V / r.

Это основные формулы для криволинейного движения, использующиеся при решении задач. Кроме того, в заданиях используется связь между линейной и угловой скоростями: v = w * r, а также формула полного ускорения: a = at + an.

Решение простых задач

Виды движения изучаются на уроках физики в седьмом классе средней школы. На них ученикам объясняют понятия поступательного и равномерного движения, даются необходимые уравнения. Решение задач на уроках необходимо для закрепления пройденного материала и реального понимания ситуаций, при которых используются знания о видах перемещения.

Вот некоторые типы заданий, часто встречающиеся в различных вариантах у учащихся при сдаче ими тестов или написании контрольных работ:

  1. Линейная скорость точек рабочей поверхности наждачного круга диаметром 300 мм не должна превышать 35 метров в секунду. Допустима ли посадка круга на вал электродвигателя, совершающего обращение со скоростью 1400 оборотов в минуту? Согласно условию, необходимо найти, как связаны между собой V1 c Vmax. То есть линейную скорость и частоту вращения. Для расчёта необходимо использовать формулу связи скоростей: v = w * r. Так как поверхность абразива плоская, то радиус его будет равняться: r = d / 2. Подставив все исходные данные, можно записать: v = 2 * p * n / 2 = p * n * d = 3,14 * 1400 * 1/60с * 0,3 м = 22 м/с. Следовательно, из полученного значения можно сделать вывод, что посадка допустима.
  2. Какова линейная скорость точек земной поверхности на широте 46,50 при суточном вращении? Радиус Земли принять равным 6400 км. Другими словами, нужно выяснить линейную скорость. Широта рассчитывается вдоль меридиана и, по сути, это угол, измеряемый между двумя точками. Одна из них находится на экваторе, а другая — в указанном месте. Между радиусами, проведёнными из этих точек, угол составляет φ. Решить поставленную задачу можно, используя формулы: v = w * r и w = 2 * p / T. Следует учесть, что радиус, соответствующий 46,50, будет меньше радиуса Земли. Для того чтобы найти нужное значение, необходимо построить виртуальный треугольник и, используя тригонометрические формулы, записать, что cos φ = r / R. Учитывая, что направлена мгновенная скорость при криволинейном движении к центру, формула будет иметь вид: V = (2 * p / T) * R * cos φ = (6,28 * 6400 * 103 * cos 46,50) / 24 * 3,600 c = 465 * 0,69 м/с = 320 м/с.

Таким образом решать задачи на нахождение различных параметров при криволинейном движении без учёта его вызвавшей причины несложно. При этом следует правильно определить тип движения и знать основные формулы.

Пример сложного уровня

В большей мере такого уровня задачи являются поучительными, так как они используются для реальных случаев. Например, при расчётах работы различных технических установок. Вот одна из них.

Пусть движение от шкива один к шкиву четыре передаётся при помощи двух временных передач. Найти частоту вращения в оборотах в минуту и угловую скорость шкива четыре, если шкив один делает 1200 об/мин, а радиусы шкивов: R1 — 8 см, R2 — 32 см, R3 — 11 см, R4 — 55 см, при этом они жёстко укреплены на одном валу. Передающие ремни принять идеальными.

Для решения этой задачи нужно вначале определить направление вращения. Из условия задачи следует, что первый шкив будет вращаться в другую сторону по сравнению с остальными тремя. Для того чтобы найти угловую скорость последнего ролика, нужно будет последовательно определить параметры предшествующих ему шкивов.

Линейная скорость точек движения на ролике первого и второго шкива одинакова. Это следует из того, что ремни идеальные, не проскакивают и не растягиваются. Таким образом будет справедливо записать: V1 = V2. Так как w1 * r1 = w2 * r2, можно составить отношение: r1 / r2 = w1 / w2 или r1 / r2 = 2 * p * n2 / 2 * p * n1. То есть отношение примет вид: r1 / r2 = n2 / n1.

Так как третий шкив закреплён жёстко на валу со вторым, то образованную систему можно считать одним твёрдым телом. Применительно к нему можно говорить об общей угловой скорости или одинаковой частоте вращения. Получается, что n3 = n2. Тогда можно записать: n3 = n1 = r1 / r2.

На следующем шаге необходимо определить линейную скорость на четвёртом ролике. Из условия известно, что V3 = V4, так как их соединение идеальное.

Это значит, что можно связать скорости третьего и четвёртого шкива с частотами: V4 = 2 *p * n4 * r4; V3 = 2 * p * n3. Из полученного равенства нужно выразить n4. Оно будет равняться: n4 = n3 * r3 / r4.

В эту формулу необходимо подставить n3 и получить итоговую формулу: n4 = n1 * (r1 * r3) / (r2 * r4).

Теперь нужно подставить исходные данные и выполнить расчёт. При этом переходить в систему СИ нет необходимости: n1 = 1200 об/мин * (8 * 11) / (32 * 55) = 1200 * 1 / 20 об/мин = 60 об/мин.

Для того чтобы найти угловую скорость, частоту необходимо умножить на 2p. При этом учесть, что угловая скорость измеряется в радианах в секунду. Поэтому w4 = 2 * p * n4 = 6, 28 * 1 = 6,28 рад/сек.

Интересной особенностью является то, что частота вращения первого шкива в двадцать раз больше четвёртого. Задача решена.

Источник: https://nauka.club/fizika/krivolineyno%D0%B5-dvizheni%D0%B5.html

Booksm
Добавить комментарий