Корпускулярно-волновой дуализм

Конец корпускулярно-волновому дуализму

Корпускулярно-волновой дуализм

Нельзя запрячь в одну телегу вола и трепетную лань…
(вольный пересказ известной фразы)

Причина возникновения корпускулярно-волнового дуализма – методологическая ошибка.

Сторонники волновой природы света предпочли «не замечать» важнейшие факты, противоречащие их теории, но «не замечать» не получилось и они просто вынуждены были ввести новую сущность – «эфир», что само по себе противоречит важному методологическому принципу – «бритве Оккама» (Ockham, Occam) или принципу Ньютона: «Гипотез не измышляю!».

Исправить эту ошибку можно следующим образом. Надо, всего лишь, прислушаться к Рене Декарту (Rene Descartes): «Точно определяйте значения слов, и вы избавите мир от половины недоразумений».

Смотрим, какое определение даётся термину «волна» (или «Волны») в современной физике [1]:

В. – изменения нек-рой совокупности физ. величин (полей), способные перемещаться (распространяться), удаляясь от места их возникновения, или колебаться внутри огранич. областей пространстваВот так! Правда, авторы сразу же отказываются от своих слов следующим образом:В совр. понимании понятие В.

настолько широко и многозначно, что фактически невозможно указать ни одного признака, общего для всех видов движений или процессов, к-рые наша интуиция или традиция относит к волновым.

Вот где «собака зарыта»! Такое откровение даёт понять – почему родился этот монстр – «корпускулярно-волновой дуализм»!

Следует заметить, что этот «отказ» содержит противоречие. С одной стороны, утверждается, что

невозможно указать ни одного признака, общего для всех видов волн. С другой стороны, я специально заменил концовку цитаты на «волн», хотя, там:движений или процессов, т.е.

это и есть общий признак!

Итак, под словом «волны» надо понимать различные «виды движений или процессов». Но, разумеется, различных «движений» в Природе очень много, значит, нужен ещё признак (или признаки), выделяющий именно те виды движений, которые и есть «волны».

Думаю, будет удобным оставить термин «волны» только для механических (классических!) волн, а для других

видов движений или процессовпридумать другой термин. Предлагаю в пределах этой статьи, называть их «волноподобными движениями» (или «явлениями» или «процессами»)…

Хотя, в принципе, я знаю общий признак, по которому

наша интуиция или традиция относит к волновымте или иные виды движений… Этим признаком является необходимость «среды» для существования волн. Правда, под «средой» надо понимать не известную «сплошную среду», являющуюся математической абстракцией, а «физическую среду», имеющую структуру, т.е.

состоящую из большого количества элементов. С помощью этого общего признака можно будет объединить классические (механические) волны и явления, которые я предложил назвать «волноподобными».

Итак, определение термина «волна» в самом широком смысле может звучать следующим образом.

Определение. Волна – процесс (или «движение» в широком смысле), возможный и, при соответствующих условиях, происходящий в системе из большого количества элементов.

Введя термин «система» вместо «среда» мы охватим большее количество физических явлений, которые

наша интуиция или традиция относит к волновым. Следует также отметить, что в этом определении не налагается никаких ограничений на наличие или отсутствие разного рода связей между элементами системы или каких-либо взаимодействий между ними.

Но, самое главное, благодаря такому определению, нам не надо выдумывать монстра – корпускулярно-волновой дуализм, потому что волна – свойство большого количества корпускул (элементов) и оно не может быть свойством одной корпускулы.

Корпускула только может «участвовать в волне«, но не «иметь волновые свойства«!

Опираясь на это определение, посмотрим по-новому на, так называемые, «интерференционные» и «дифракционные картины», создаваемые световыми потоками. Разумеется, все эти известные опыты, якобы, «подтверждающие» волновую природу света (и других элементарных частиц!), сразу же, нужно отнести к «волноподобным» явлениям!

Эти картины, лишь на первый взгляд, похожи на обычные (классические) волны.

Сравним известные «кольца Ньютона» с «кругами на воде», образующимися при падении камня на спокойную водную поверхность (см. Рис.1 и 2).

На рис.1 приведены кольца Ньютона в трёх вариантах: 1 — в отражённом белом свете; 2 – в зелёном; 3 – в красном [2]. А на рис.2 приведено «распространение волн от, упавшего в воду, камня» из книги [3].

——- Рис 1. Кольца Ньютона.——-Рис 2. Распространение волн от упавшего в воду камня.

Сразу же бросается в глаза статичность колец Ньютона и динамичность волн на воде, которые, действительно, распространяются, движутся. Это первое отличие.

Второе отличие можно увидеть, сравнивая кольца Ньютона со стоячей волной. В стоячей волне также присутствует динамика – неподвижны только узлы, а гребни и впадины непрерывно движутся, как бы, меняются местами.

Третье отличие состоит в том, что кольца Ньютона существуют, пока есть освещение, а для «кругов на воде» камень является лишь первоначальным толчком, после которого они пускаются в «свободное плавание».

Все эти отличия наводят на мысль, что кольца Ньютона не являются результатом интерференции каких-то «волн», а лишь перераспределением светового потока из-за взаимодействия фотонов с атомами стекла.

При этом, определяющим фактором является геометрия поверхности стекла, что легко проверяется изменением радиуса кривизны линзы или другими искажениями геометрии поверхностей. Т.е.

свойства света, можно даже сказать, «второстепенны», поскольку, качественно картина колец Ньютона не зависит от цвета света или его интенсивности, а зависит от свойств среды – стекла.

С другой стороны, кольца Ньютона подпадают под наше определение, потому что здесь есть, даже не одна, а, по крайней мере, две системы: система – поток большого количества фотонов и система – большое количество атомов, составляющих стёкла. И неудивительно, что взаимодействие этих систем порождает «волноподобное» явление, которое показалось некоторым физикам одним из доказательств волновой природы света.

В книге «Понятная физика»[4] приводится такое «подтверждение» волновой природы света:

«Если свет это поток фотонов», – подумал Тейлор, – «Я смогу сделать его ничтожно редким». Он уменьшил накал лампочки до минимума и установил перед иглой несколько светофильтров. По расчетам Тейлора, в секунду на иголку попадало не больше одного фотона. Значит, ни о каком коллективном взаимодействии частиц не могло быть и речи. Он поместил установку в светонепроницаемый кожух, установил вместо экрана фотопластинку, повесил табличку «Не выключать!», взял отпуск и уехал кататься на яхте. Когда Тейлор вернулся через месяц, отдохнувший и загорелый, он проявил фотопластинку и увидел, что следы двух миллионов фотонов, поочередно попадавших в мишень в течение месяца, сложились на фотопластинке в классическую дифракционную картину. Для тех, кто успел поверить в теорию квантов, это был настоящий шок. А теперь ещё раз глянем на наше определение волн, и, сразу же, приходим к выводу, что описанный эксперимент никоим образом не доказывает волновую природу света. А, как раз, наоборот, доказывает, что, так называемая, «дифракционная картина» не рисуется ни одним фотоном, ни двумя, ни десятью, ни сотней и, даже, ни тысячей фотонов, а только «двумя миллионами» фотонов, т.е. только «большим количеством элементов, составляющих систему«!

Обратите внимание также на то, что иголку, участвующую в этом эксперименте, никак не используют при интерпретации результатов эксперимента, хотя без иголки никакой дифракционной картины не будет и в помине!

Как видим, один и тот же эксперимент можно интерпретировать по-разному, смотря на каких основополагающих утверждениях стоим…

Литература

  1. Физическая энциклопедия / Гл. ред. А.М. Прохоров. Ред. кол. Д.М. Алексеев, А.М. Балдин, А.М. Бонч-Бруевич, А.С. Боровик-Романов и др.—М.: Сов. энциклопедия. Т. I. Ааронова – Бома эффект — Длинные линии. 1988. 704с., ил.
  2. Мякишев Г.Я., Буховцев Б.Б. Физика. Учебное пособие для 10 класса.—М.: Просвещение, 1972.

    —368с.: ил.

  3. Кадомцев Б.Б., Рыдник В.И. Волны вокруг нас. – М.: Знание, 1981. – 152с., ил.
  4. И. Джавадов. Понятная физика. – Учебное пособие/Санкт-Петербург: Написано пером, 2014.—154с., ил.

  • физика
  • волны
  • корпускулярно-волновой дуализм
  • бритва Оккама
  • Рене Декарт

Источник: https://habr.com/post/427235/

Корпускулярно-волновой дуализм

Корпускулярно-волновой дуализм

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: гипотеза де Бройля о волновых свойствах частиц, корпускулярно-волновой дуализм, дифракция электронов

Корпускулярно-волновой дуализм (слово дуализм означает двойственность) — это физический принцип, утверждающий, что любой объект природы может вести себя и как частица, и как волна.

С первым проявлением этого принципа мы столкнулись в предыдущем листке, когда говорили о двойственной, корпускулярно-волновой природе света. В явлениях интерференции и дифракции свет демонстрирует свою волновую природу. В явлении фотоэффекта свет выступает как дискретный поток частиц — фотонов.

Является ли свет каким-то особым объектом нашего мира, таким, что подобный дуализм присущ только ему? Или, быть может, корпускулярно-волновой дуализм — это свойство вообще всех материальных объектов, просто впервые обнаружен он был для света?

Гипотеза де Бройля

Идея об универсальной двойственности корпускулярных и волновых свойств всех объектов природы была впервые высказана Луи де Бройлем (в 1924году) в качестве гипотезы о волновых свойствах частиц.

Итак, мы знаем, что свету с частотой и длиной волны соответствуют частицы — фотоны, обладающие энергией и импульсом . Де Бройль, в сущности, постулировал обратное.

Гипотеза де Бройля. Движению каждой частицы соответствует распространение некоторой волны. Частота и длина этой волны определяются энергией и импульсом частицы:

(1)

Точно так же, любой волне с частотой и длиной волны отвечают частицы с энергией и импульсом .

Чтобы лучше осмыслить гипотезу де Бройля, давайте обсудим дуализм «волна–частица» на примере электромагнитного излучения.

В случае электромагнитных волн мы имеем следующую закономерность. По мере увеличения длины волны всё легче наблюдать волновые свойства излучения и всё труднее — корпускулярные.

И наоборот, чем меньше длина волны, тем ярче выражены корпускулярные свойства излучения и тем труднее наблюдать его волновые свойства.

Изменение соотношения корпускулярных и волновых свойств хорошо прослеживается при движении по известной вам шкале электромагнитных волн.

• Радиоволны.Длины волн здесь настолько велики, что корпускулярные свойства излучения практически не проявляются. Волновые свойства в этом диапазоне абсолютно доминируют.

Длины волн могут составлять несколько метров или даже километров, так что волновая природа проявляется «сама собой» — радиоволны в процессе дифракции запросто огибают дома или горы. Излучение радиоволн и их взаимодействие с материальными объектами отлично описывается в рамках классической электродинамики.

• Видимый свет и ультрафиолет. Это своего рода «переходная область»: в оптике мы можем наблюдать как волновые свойства света, так и корпускулярные.

Однако в обоих случаях надо постараться.

Так, длины волн видимого света много меньше размеров окружающих нас тел, поэтому в опытах по интерференции или дифракции света нужно создавать специальные условия (малость щелей или отверстий, удалённость экрана).

В свою очередь, термин «красная граница фотоэффекта» также подчёркивает пограничность данного диапазона: фотоэффект начинается лишь при переходе через красную границу.

• Рентгеновское и гамма-излучение. Длины волн очень малы, и наблюдать волновые свойства излучения весьма затруднительно. Так, верхняя граница длин волн рентгеновского излучения составляет нм; это лишь на два порядка превышает размер атома. Ясно, что дифракцию на «обычных» препятствиях при такой длине волны наблюдать невозможно.

Однако в рентгеновский диапазон входят длины волн порядка размера атома и межатомных расстояний в кристалле ( нм). Поэтому дифракция рентгеновских лучей наблюдается на «естественных» дифракционных решётках — кристаллических решётках твёрдых тел (эта идея была высказана немецким физиком Лауэ в 1912 году).

Энергия квантов в рентгеновском и гамма-диапазоне настолько велика, что излучение ведёт себя почти стопроцентно как поток частиц.

Рассуждая по аналогии с электромагнитными волнами, можно заключить, что и частица будет проявлять волновые свойства тем лучше, чем больше её длина волны де Бройля (в масштабах данной ситуации).

Так, мы совсем не наблюдаем волновых свойств у окружающих нас тел. (Видели вы, например, интерференцию движущихся автомобилей?) А почему? Давайте посчитаем длину дебройлевской волны объекта массой кг, движущегося со скоростью м/с:

м.

Это на порядков меньше размера атома. Воображение отказывается представить себе столь малую величину. Разумеется, никакого волнового поведения у нашего объекта при таких условиях не обнаруживается — он стопроцентно ведёт себя как «частица», то есть как материальная точка классической механики.

Дифракция электронов

Совсем другое дело — электрон. Масса электрона равна кг, и столь малое значение массы (а стало быть, и импульса в формуле ) может дать длину волны де Бройля, достаточную для экспериментального обнаружения волновых свойств.

И вот оказывается, что электроны с энергией эВ (при такой энергии становится несущественным хаотическое тепловое движение электронов, и электронный пучок можно считать когерентным) имеют дебройлевскую длину волны примерно нм — это как раз порядка размера атома и расстояний между атомами в кристаллической решётке! Опыт по наблюдению дифракции рентгеновских лучей на кристаллических структурах уже имелся, поэтому оставалось направить на кристаллическую решётку пучок электронов.

Впервые это было сделано в знаменитом эксперименте американских физиков Дэвиссона и Джермера (1927 год). Дифракция электронов на кристаллах была обнаружена! Как и ожидалось, полученная дифракционная картина имела тот же характер, что и при дифракции на кристаллической решётке рентгеновских лучей.

Впоследствии волновые свойства были обнаружены и у более крупных частиц: протонов, нейтронов, атомов и молекул. Гипотеза де Бройля, таким образом, получила надёжное опытное подтверждение.

Соотношение неопределённостей

Обнаружение корпускулярных свойств электромагнитных волн и волновых свойств частиц показало, что объекты микромира подчиняются необычным законам. Эти законы совершенно непривычны для нас, привыкших наблюдать за макроскопическими телами.

Наше сознание выработало некоторые образы частицы и волны, вполне пригодные для описания объектов классической физики. Частица — это маленький, локализованный в пространстве сгусток вещества. Волна — это распределённый (не локализованный) в пространстве колебательный процесс. Как же эти понятия могут совмещаться в одном объекте (например, в электроне)?

Вообразить такое действительно получается с трудом. Но что поделать — это факт. Природа оказывается намного богаче нашего воображения.

В своей повседневной жизни мы находимся очень далеко от микромира, и в привычном нам диапазоне макроскопических тел природа демонстрирует свои «крайние» проявления — в виде «только частиц» или «только волн». Вот почему корпускулярные и волновые свойства представляются нам несовместимыми друг с другом.

Но на самом деле это не так: в микромире оказывается, что один и тот же объект (например, электрон) легко может обладать обоими свойствами одновременно — словно человек, обладающий разными, несовместимыми на первый взгляд чертами характера.

Так, будучи частицей, электрон локализован в пространстве; но, будучи волной, локализован не в точке, а «размазан» по некоторой области. Координаты и скорость электрона не могут быть измерены одновременно сколь угодно точно. Неопределённость координаты и неопределённость соответствующей проекции импульса оказываются связанными соотношением неопределённостей Гейзенберга:

(2)

Соотношение неопределённостей (2) имеет фундаментальный характер — оно применимо к любым объектам природы.

Чем точнее мы знаем координаты объекта (то есть чем в меньшей пространственной области он локализован), тем больше получается разброс значений его импульса(то есть тем с большей скоростью объект «готов вылететь» из этой области). И наоборот, чем точнее мы знаем импульс объекта, тем меньше у нас информации о том, где этот объект находится.

Но коль скоро нет возможности одновременно точно измерить координаты и скорость, то теряет смысл понятие траектории движения объекта. Механика Ньютона перестаёт работать в микромире и уступает место квантовой механике.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/korpuskulyarno-volnovoj-dualizm/

Опыт Юнга

Споры продолжались до начала XIX века, когда Томас Юнг поставил свой знаменитый опыт: свет проходит через две щели и падает на экран, где появляются темные и светлые интерференционные полосы. Это можно объяснить тем, что в некоторых местах световые волны взаимно усиливаются, а в других — гасятся.

Напрашивался однозначный вывод: свет—это все-таки электромагнитная волна! Волновая теория электромагнитного излучения нашла свое теоретическое описание в работах Джеймса Максвелла.

Использование представления о свете как волне позволяет объяснить явления, связанные с интерференцией и дифракцией, в том числе структуру светового поля, а именно объяснить построение изображений и метод голографии.

Прошло еще почти сто лет, и Макс Планк, чтобы решить проблему ультрафиолетовой катастрофы, ввел понятие фотона. Научный мир снова обратился к проблеме света, и вот тут опять возник вопрос.

Что же он такое: частица или все же волна? И как все это описать? Свет в одних случаях ведет себя как поток частиц, в других — обладает волновыми свойствами. То есть обладает корпускулярно-волновым дуализмом.

Корпускулярно-волновой дуализм — свойство любой микрочастицы обнаруживать признаки частицы или корпускулы и волны.

Частицы как волны

Свет — это волна. Но свет также считали состоящим из частиц, или «корпускулов». Не так давно материя, точнее, атомы, была сведена к набору более мелких частиц. Но оставался вопрос: не могут ли и они вести себя как волны?

Именно об этом размышлял Луи Де Бройль в 1923 году. Он предполагал, что корпускулярно-волновой дуализм характерен не только для видимого света, но также для других форм излучаемой энергии. Например, это явление можно было попытаться применить к имеющим массу частицам – электрону или протону.

Де Бройль стал рассматривать каждую частицу как некий цуг волн, впоследствии названный «волновым пакетом». Конечно, такие волновые формы не распространяются, как видимый свет, но имеют с ним много общего.

Так, скорость частицы оказалась обратно пропорциональна длине волны ее волновой формы — более быстрые частицы имеют более короткую длину волны.

Кинетическая энергия частицы получалась пропорциональной частоте ее волновой формы.

Электромагнитный спектр уже давно «размечен» на диапазоны — гамма-лучи, излучаемые при радиоактивном распаде, с высокочастотной стороны и безвредные радиоволны Герца с низкочастотной. Наступало время изучить подобные спектры и для волновых форм субатомных частиц

Для доказательства Де Бройль использовал чистую математику.

В 1927 году Джордж Томсон — сын «Джи Джи» (дружеское прозвище Джозефа Джона Томсона), открывшего за 28 лет до этого существование электрона — сумел найти материальные свидетельства правоты Луи де Бройля.

Томсон повторил опыт Юнга, который доказывал волновую природу света, но работал с пучком электронов. Он направил поток электронов на экран с двумя щелями, а детектор расположил за ним. Прибор отмечал каждый пролетающий электрон черной точкой.

Если бы электроны не имели волновых свойств, они дали бы на экране две группы точек за каждой из щелей. Но Томсон обнаружил, что точки образовали те самые темные полоски интерференционной картины – как и волны. Так Томсон выяснил, что его отец открыл не только субатомную частицу, но и волну.

Эффект Штарка

Йоханнес Штарк

В 1913 году Йоханнес Штарк обнаружил, что внешние электрические поля вызывают «расщепление» линий эмиссионного спектра, когда на месте одной линии возникает их несколько. Это связано с тем, что электромагнитные поля способны изменять волновые формы электронов поля. Эффект, или расщепление, Штарка стали использовать для исследования свойств электронов.

Наиболее ярко корпускулярно-волновой дуализм проявляется у элементарных частиц. Электрон, нейтрон, фотон в одних условиях ведут себя как локализованные в пространстве материальные объекты—частицы, обладающие определенными энергиями и импульсами, а в других — как волны, что проявляется в их способности к интерференции и дифракции.

И ни то, и ни другое

Явления интерференции и дифракции света убедительно свидетельствуют о волновой природе света.

Закономерности теплового излучения, фотоэффекта можно успешно объяснить с классической точки зрения только на основе представлений о свете как о потоке отдельных фотонов.

Однако волновой и корпускулярный способы описания света не противоречат, а взаимно дополняют друг друга, так как свет одновременно обладает и волновыми, и корпускулярными свойствами.

Волновые свойства света играют определяющую роль в закономерностях его интерференции, дифракции, поляризации, а корпускулярные — в процессах взаимодействия света с веществом.

Сейчас концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как, во-первых, некорректно сравнивать и противопоставлять материальный объект, например электромагнитное излучение, и способ его описания — корпускулярный или волновой; и, во-вторых, число способов описания материального объекта может быть больше двух—корпускулярный, волновой, термодинамический и так далее, так что сам термин «дуализм» становится по сути неверным. На момент своего возникновения концепция корпускулярно-волнового дуализма служила способом описания поведения квантовых объектов путем подбора аналогий из классической физики. На самом же деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении.

И тем не менее именно споры о теории света и привели в конце концов к созданию квантовой физики, о которой и пойдет речь дальше.

«Нет особой физической разницы между радиоволнами и видимым светом с точки зрения физики — Вы будете описывать их одними и теми же уравнениями и математикой. Только наше повседневное восприятие различает их» (Элефтериос Гулильмакис)

ссылкой

Источник: https://SiteKid.ru/fizika/korpuskulyarno-volnovoj_dualizm.html

Корпускулярно-волновой дуализм — лекции на ПостНауке

Корпускулярно-волновой дуализм

ВИДЕО Что такое элементарная частица? Слово «частица» происходит от слова «часть», поэтому обычно представляется, что это какой-то кирпичик, из которого мы строим целое.

Кирпичик ассоциируется с чем-то цельным, твердым, компактным, небольшим, а частица — с каким-нибудь шариком (это первое, что приходит в голову у обывателя, когда говорят «элементарная частица»).

У осведомленного человека возникает вопрос: как работают научные методы, из чего состоит этот шарик? Откуда следует предположение, что частица должна быть шариком? Кроме того, слово «частица» происходит из ассоциации с каким-то шариком.

Провел ли человек, который представляет себе элементарную частицу в виде шарика, эксперименты по проверке того, как элементарная частица проявляет себя во всех ипостасях? Проверил ли он, что она ведет себя как шарик при таких условиях, при других условиях, и поставил ли все возможные эксперименты? Оказывается, что это не так.

Элементарные частицы иногда ведут себя как шарик или даже как безразмерная точка, а иногда совершенно по-другому. Так устроено природное явление, и я сейчас опишу экспериментальные наблюдения, из которых люди делают выводы о корпускулярно-волновом дуализме.

Начнем совсем издалека, с опыта Резерфорда, который был поставлен в начале XX века. Во-первых, в опытах Резерфорда проверялась модель атома Томсона.

Считалось, что атом — это пудинг, состоящий из ваты, внутри которой вкраплены твердые шарики с отрицательным зарядом, электроны, а сама вата имеет положительный заряд. Чтобы проверить эту модель, Резерфорд решил рассеять альфа-частицы на тонкой пленке, сделанной из золота.

Что такое альфа-частицы, тогда приблизительно было известно. Альфа-частицы приблизительно в четыре тысячи раз тяжелее электрона.

И Резерфорд надеялся увидеть, что поток из альфа-частиц беспрепятственно пройдет через пленку — по аналогии с тем, что у вас кегли массой 1 грамм, а мимо идет четырехкилограммовый кегельбанный шар. Вряд ли он заметит эти кегли на своем пути. Резерфорд ожидал, что все альфа-частицы пройдут сквозь, и все.

Но сотрудники Резерфорда проверили поток частиц по всех направлениях, не только то, что прошло сквозь. И они увидели, что какие-то из альфа-частиц отражаются от пластинки и улетают обратно.

Это было совершенно невероятно! Кегельбанный шар, пролетая через нечто, состоящее из ватной консистенции с вкрапленными туда шариками массой, которая в четыре тысячи раз меньше, пройдет через это, не заметив.

Но была вторая альтернатива для модели атома, и естественный вывод, который Резерфорд сделал, — атом устроен по-другому. Это не пудинг, а нечто очень тяжелое с массой, сопоставимой с массой альфа-частицы, сосредоточенное в маленьком центре, вокруг которого летает электрон.

Если это так, то альфа-частица имеет массу, сопоставимую с ядром атома, и при столкновении с ним она, безусловно, может отразиться, как если кегельбанный шар попадет по кегельбанному шару, то он может отлететь назад.

Резерфорд и его сотрудники измерили, какое количество из общего потока альфа-частиц летит в разных направлениях. Было составлено распределение — это называется сечение рассеяния: поток частиц в этом направлении, поделенный на общий поток падающих.

После этого Резерфорд, будучи уже сорокалетним известным ученым, пошел учиться теории вероятности в университет, прослушал курс и вывел формулу для рассеяния. Эту формулу можно найти в первом томе курса Ландау — Лифшица (он называется «Механика»).

Главы | Взор божества и падающая капля

Формула устроена так. Рассматриваются рассеивающие центры, которых в пластинке много. Для простоты давайте рассмотрим один рассеивающий центр. На него летит поток из альфа-частиц.

Какая доля этих альфа-частиц полетит в направлении, отличном от общего падающего потока? В этой формуле существенно используется то, что у вас поток альфа-частиц точечный, то есть используется какое-то прицельное расстояние. Чем больше прицельное расстояние, тем меньше отклонение альфа-частиц.

Чем меньше прицельное расстояние, тем больше отклонение альфа-частиц. Так была написана формула с использованием законов классической механики.

Если же вы откроете третий том Ландау — Лифшица под названием «Квантовая механика», вы с удивлением увидите, что та же самая формула из первого тома выводится и использованием волн. В этой формуле рассматривается рассеивающий центр, он все еще точечный. На него идет поток волн, которыми являются альфа-частицы.

Когда идет волна, она заполняет все пространство, и ей прицельного расстояния не нужно. Она рассеивается либо не рассеивается с какой-то вероятностью и с какой-то вероятностью летит в том или ином направлении. Дело в том, что эта волна является волной вероятности.

Вы считаете с помощью волновой механики вероятность волны рассеиваться в том направлении и получаете ту же самую формулу, которую получил Резерфорд, рассеивая точечные частицы.

На этом история не заканчивается. Вы открываете четвертый том Ландау — Лифшица, который посвящен квантовой электродинамике, что является уже не квантовой механикой, а квантовой теорией поля.

Там рассчитывается формула, — правда, не для альфа-частиц, а для электронов, но ситуация абсолютно аналогичная, и все можно пересчитать для альфа-частиц. Вы получите то же рассеяние волн на рассеивающем центре, дающее ту же формулу, только уже с использованием методов квантовой теории поля.

Более того, вы можете рассмотреть ядро как волну и рассеять волну на волне и получите ту же самую формулу. Такой удивительный факт. Эксперимент дает просто формулу вероятности увидеть альфа-частицу, вылетающую в этом направлении.

А расчеты вы можете провести как частицами точечными, не имеющими размера вообще, так и волнами, которые заполняют все пространство, и получить тот же ответ.

Можно пойти дальше и посмотреть, как происходит рассеяние частиц в ускорителях. Исходно на ускорителях рассеивали поток частиц на мишенях. Это было энергетически невыгодно.

Если вы хотите структуру частиц изучать, то выгоднее рассеивать частицы на частицах, потому что тогда в центре масс энергия сильно выше, чем если мишень покоится, а на нее налетают частицы. Сильно больше выигрыш в энергии. Например, на Большом адронном коллайдере не на мишени рассеивается, а протоны на протоны.

Когда Будкер предлагал рассеивать частицы на частицах, над ним смеялись известные ученые, потому что говорили, что он собирается число Авогадро рассеивать на числе Авогадро — попасть точкой в точку.

Когда вы на ускорителе рассеиваете потоки частиц, вам нужно два потока совместить так, чтобы они друг в друга попали. Там откалибровывают и в конце концов сводят два потока в одну точку. Они действительно сталкиваются друг с другом, и происходит рассеяние. Рассчитывают сечение рассеяния потока частиц в разных направлениях.

И при расчетах сечения рассеяния частиц получается, что вы используете исключительно волны. Вы используете методы квантовой теории поля и рассеиваете волны. Получаются формулы, которые хорошо описывают то, что происходит в детекторах, какие частицы в каких направлениях летят в результате этого.

Это одновременное описание одних и тех же явлений при помощи частиц и при помощи волн.

Источник: https://postnauka.ru/video/81299

Урок 14. корпускулярно-волновой дуализм — Естествознание — 10 класс — Российская электронная школа

Корпускулярно-волновой дуализм

Естествознание, 10 класс

Урок 14. Корпускулярно-волновой дуализм

Перечень вопросов, рассматриваемых в теме:

  • В чем заключаются корпускулярные свойства полей;
  • В чем заключается гипотеза о волновых свойствах частиц;
  • При каких условиях проявляются волновые, а при каких — корпускулярные свойства частиц вещества и частиц поля;
  • Каков смысл понятия «корпускулярно-волновой дуализм».

Глоссарий по теме

Квантовая теория – совокупность представлений, согласно которым электромагнитные волны излучаются, распространяются, поглощаются отдельными порциями, которые называются «квантами». Теория послужила основой для появления квантовой механики, объясняющей движение микрообъектов. Гипотеза была предложена М. Планком, развита А. Эйнштейном.

Квант — (от лат. quantum – «сколько») – обозначает в физике неделимую порцию величины, например, энергии, поля или момента инерции. Заметим, что применимо это понятие только к микромиру: может быть квант света и квант гравитационного поля.

Интерференция – сложение двух волн, вследствие которого наблюдается устойчивая во времени картина усиления или ослабления результирующих световых колебаний в различных точках пространства. Результат зависит от угла падения света на пленку, ее толщины и длины волны. Примером может служить окрашивание поверхности мыльного пузыря.

Дифракция – огибание волнами краев препятствий – присуща любому волновому движению. Дифракция света наблюдается на препятствиях, размеры которых сравнимы с длиной волны (порядка 10-7 м).

Фотоэффект – явление вырывания электронов из вещества под действием падающего на него света. Открыто в 1886 году Г. Герцем, подробно изучено А.С. Столетовым. Квантовая теория света дала возможность объяснить это явление. А. Эйнштейн был удостоен Нобелевской премии за работы по теории фотоэффекта.

Фотон — мельчайшая частица электромагнитного излучения, имеющая энергию в один квант.

Планетарная модель атома – предложена в 1906 году Э. Резерфордом. Согласно предложенной модели ядро атома имеет положительный заряд и располагается в центре, вокруг него по своим орбитам вращаются отрицательно заряженные частицы – электроны. Оказалась несостоятельной.

Энергетические уровни – определенная энергия, которой характеризуется данный электрон в атоме, соответствующая его расстоянию от ядра. Термин предложен Н.Бором.

Основная и дополнительная литература по теме урока:

Естествознание. 10 класс [Текст]: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, И.С. Дмитриев, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд., испр. – М.: Просвещение, 2017 : с 64-71.

Открытые электронные ресурсы по теме урока:

Кеттерле В. Когда атомы ведут себя как волны. Бозе-эйнштейновская конденсация и атомный лазер. Нобелевская лекция. 2001 г. Электронный доступ : https://ufn.ru/ru/articles/2003/12/e/

Корпускулярно-волновой дуализм https://www..com/watch?v=Qnywl9mnI_M

Как объяснить корпускулярно-волновой дуализм. д.ф-м.н., профессор, профессор ВолГУ А. Морозов / Электронный ресурс: https://www..com/watch?v=FWWlclQ0ozs

Корпускулярно-волновой дуализм — Эмиль Ахмедов Открытый образовательный ресурс: ассоциация специалистов в сфере образования, науки и просвещения «Издательский дом “ПостНаука”» адрес доступа: https://postnauka.ru/video/81299

Теоретический материал для самостоятельного изучения

В классической физике частицы и волны резко противопоставлялись как олицетворение дискретности (прерывности) и непрерывности соответственно.

В качестве существенных различий считалось, что частицы относительно строго локализованы в пространстве и движутся по определенным траекториям.

Волны же наоборот не имеют строгой локализации и обладают следующими признаками: могут огибать препятствия, могут накладываться друг на друга, существовать в одной и той же точке пространства.

При движении частиц происходит перенос вещества и энергии, а при распространении волн переноса вещества не происходит. Свойственное классической физике противопоставление вещества как дискретного образования и поля, как непрерывного, соответствует принципу «или – или». Однако исследование природы света сняла это противоречие.

Волновые свойства света

Ньютон в своем трактате «Оптика, или Трактат об отражениях, преломлениях, изгибаниях и цветах света», только выдвинул предположение, что свет обладает свойствами волны, однако не стал развивать эту идею. Ученый объяснял законы оптики с позиций корпускулярной теории. Считая свет потоком частиц

Однако, в 1801 году, Томас Юнг обнаружил явление интерференции у света, что характерно для всех волн. Суть явления заключается во взаимном усилении или ослаблении когерентных волн при наложении. Напомним, что «Когерентные» можно перевести как «синхронные», «согласованные»; у когерентных волн одинаковая частота (одинаковая длина волны).

Если амплитуды волн света совпадут при наложении, то мы будем наблюдать усиление яркости светового пятна. Если волны будут противоположны по значению максимумов и минимумов (гребней и впадин), то мы можем добиться такого состояния, когда световое пятно не будет видимо. Волновая характеристика света помогла Т.

Юнгу объяснить явление дисперсии (разложения) света призмой.

Если свет – это волна, то наряду с интерференцией должна наблюдаться и дифракция света. Ведь дифракция – огибание волнами краев препятствий – присуща волновому движению.

В результате этого в области геометрической тени могут возникать светлые зоны.

Наоборот, в области, куда в соответствии с законом прямолинейного распространения светового луча должен падать свет, может возникать темная зона.

Лишь после проведения качественных опытов, демонстрирующих интерференцию и дифракцию, волновая природа света стала признанной.

Корпускулярные свойства света

К концу 19 века волновая природа света не вызывала сомнения . Однако Макс Планк показывает, что электромагнитное поле излучается порциями – квантами.

Альберт Эйнштейн, в свою очередь, подтверждает, что и поглощение происходит квантами.

Эти идеи заложили основы квантовой теории и позволили точно описать явление фотоэффекта, суть которого заключается в том, что фотоны способны выбивать электроны из внешнего слоя вещества.

При этом количество выбитых электронов связано с частотой световых волн, но не с их интенсивностью. Другими словами, электроны будут вылетать с поверхности независимо от яркости света, но при условии, что электрон получит достаточную порцию энергии (напомним, что энергия пропорциональна частоте E=hν).

Поскольку энергия кванта может быть поглощена только полностью, то не удивительно, что если энергия кванта света мала (большая длина волны), то и электрон не сможет покинуть вещество, т.е. не совершится работа выхода (Вспомните, что понимается под «работой» в физике). Квант света Эйнштейном был назван фотоном.

Стоит отметить, что фотон это не абстрактная модель, это реально существующая частица, хотя и не имеющая массы покоя. Другими словами, фотон существует только в движении.

Корпускулярно-волновой дуализм света

Тем самым, электромагнитное поле проявляет одновременно и волновые, и квантовые (корпускулярные) свойства, как свойства непрерывности, так и свойства прерывности (дискретности).

В одних явлениях (интерференция, дифракция) проявляются резче волновые свойства, в других (фотоэффект, фотохимические реакции) – квантовые свойства излучения. Однако ряд свойств можно объяснить в согласованности, как с волновых, так и квантовых позиций.

Так, например, давление света можно объяснить в согласии с опытом как передачей фотонами (квантами света) импульса поверхности, на которую они падают, так и на основе представлений об электромагнитной волне, где электрическая составляющая возбуждает движение зарядов в проводящей поверхности, а магнитная обеспечивает действие сила Лоренца. Такого рода двоякое объяснение одного и того же явления говорит о том, что свет одновременно проявляет и те, и другие свойства, а потому одновременно обладает ими, обнаруживая единство. Это единство проявляется в основных характеристиках фотона. Он обладает, как любая частица, энергией (hν), массой(), и импульсом (), но эти корпускулярные характеристики выражаются через сугубо волновую характеристику – частоту.

Одновременно обладая и теми и другими свойствами, свет не всегда одновременно их проявляет. В зависимости от условий резче проявляются одни или другие свойства. Такая двойственность света называется корпускулярно-волновым дуализмом.

Волновые свойства вещества

Итак, электромагнитное излучение обладает одновременно свойствами волн и свойствами частиц.

Но оказалось, что эта двойственность характерна не только для поля, что ей обладают и любые микрообъекты. Например, частица вещества – электрон.

Так, согласно современным представлениям, наряду с волнами электромагнитного поля имеются волны вещества. (Вспомним про тепловые излучения!). Эта идея, предложенная в 1924 году Луи де Бройлем, также была подтверждена опытным путем.

Суть опыта состояла в том, что поток электронов определенной энергии направлялся на тонкую пластинку и после этого попадал на фотопластинку, на которой обнаруживалась типичная дифракционная картина. Электроны дифрагировали как волны.

С этих позиций изменились и современные представления о строении атома. На смену планетарной модели Эрнста Резерфорда, согласно которой электроны как планеты вращаются по своим траекториям пришла новая модель.

Описанная по подобию движения планет Солнечной системы старая модель оказалась не состоятельной, поскольку не могла объяснить, почему электрон не падает на ядро, и почему спектры излучения и поглощения атомов линейчатые.

Сегодня при описании атома учитывается дуальная природа электрона, существование которого связано с некоторым «стационарным» состоянием, в котором он свою энергию не теряет. Энергию электрон тоже может изменить дискретно при поглощении или испускании квантов.

Таким образом существование электрона в атоме связано с энергетическими уровнями, которые, вследствие волновой природы электрона, можно представить, как области пространства вокруг ядра, где с наибольшей вероятностью мы можем его зафиксировать. Современные представления о микромире не могут быть описаны понятиями классической механики, поэтому на смену понятию орбита, приходит менее категоричное – орбиталь.

Из вероятностного характера описания следует крах концепции детерминизма (предполагает однозначность и предопределенность будущего, это вытекает из признания жесткой причинно-следственной связи между событиями и явлениями и отрицает объективность случайности).

В соответствии с квантовой теорией будущее состояние любой системы может быть предсказано лишь с некоторой вероятностью. Идея вероятностного характера процессов в микромире постепенно была распространена и на процессы в нашем макромире.

Наше будущее, таким образом, не является жестко определенным.

Единство волновых и корпускулярных свойств, дискретности и непрерывности, т.е. корпускулярно-волновой дуализм, есть общая черта материальных объектов, которой обладают и поля, и все микрочастицы. И это еще одно доказательство единства материального мира.

Выводы:

Свет (электромагнитные волны) осуществляет распространение энергии порциями – квантами, проявляя наравне с волновыми и квантовые свойства.

Электрон в определенных условиях ведет себя как волна.

Волна, соответствующая определенной частице, определяет вероятность нахождения частицы в данной точке пространства.

Всем микрочастицам присущи как корпускулярные, так и волновые свойства. В то же время любую из микрочастиц нельзя считать ни частицей, ни волной в классическом понимании. К корпускулярному и волновому описанию следует относиться как к дополняющим друг друга точкам зрения на один и тот же круг явлений.

Примеры и разбор решения заданий тренировочного модуля.

Задание1. Выберите один ответ

Интерференцией света объясняется физическое явление:

А: красный цвет абажура настольной лампы, светящейся белым светом

Б: красный цвет мыльной пленки, освещаемой белым светом

В: проявление цветного спектра настольной лампы, светящейся белым светом

Правильный ответ: Б

Пояснение: явления под А и В связаны с дисперсией

Задание2. Вставьте пропущенные элементы в тексте по смыслу:

«Единство ___________и корпускулярных свойств, дискретности и_____________, т.е. корпускулярно-волновой дуализм, есть ________черта материальных объектов, которой обладают и поля, и все________. И это еще одно доказательство единства материального мира»

Варианты элементов для подстановки: непрерывности; общая; тела; микрочастицы; волновых; частная

Ответ: «Единство волновых и корпускулярных свойств, дискретности и непрерывности, т.е. корпускулярно-волновой дуализм, есть общая черта материальных объектов, которой обладают и поля, и все микрочастицы. И это ещё одно доказательство единства материального мира»

Источник: https://resh.edu.ru/subject/lesson/6362/conspect/

Booksm
Добавить комментарий