Когерентность волн

4.2. Когерентность световых волн

Когерентность волн

Монохроматическая плоская электромагнитная волна описывается следующим выражением для напряженности поля в любой точке пространства, определяемой радиус-вектором r:

(4.5)

где Е0, ,  и  являются постоянными величинами. Однако всякая реальная световая волна образуется наложением колебаний различных частот, заключенных в конечном интервале .

Согласно формуле разбросу частот  соответствует разброс значений волнового числа .

Следует отметить, что разброс волнового вектора может быть связан также с разбросом направлений распространения волн, который характеризуется векторной величиной .

Сначала обсудим временную когерентность, которая связана с разбросом частот . Рассмотрим случай наложения в некоторой точке пространства двух световых колебаний с несколько различающимися частотами :

(4.6)

Интерференционный член

при сделанных предположениях будет зависеть от времени и разности частот

Всякий оптический прибор, с помощью которого наблюдается интерференция света (фотопленка, человеческий глаз и др.), обладает определенной инертностью, которая характеризуется временем  регистрации прибором интерференционной картины. При этом оптический прибор регистрирует картину, усредненную по промежутку времени . Если за это время косинус в интерференционном члене

с равной вероятностью принимает все значения от –1 до +1, то среднее значение интерференционного члена будет равно нулю. Интерференционная картина не будет видна, то есть регистрируемая прибором интенсивность окажется равной сумме интенсивностей, создаваемых в данной точке каждой волной в отдельности.

Если же за время  значение косинуса остается практически неизменным, то прибор зарегистрирует интерференцию.

Таким образом, для характеристики когерентных свойств световых волн вводится время когерентности , которое определяется как время, за которое изменение разности фаз волн, накладывающихся в данной точке пространства, достигает значения :

При

прибор не зафиксирует интерференцию, а при

прибор обнаружит интерференционную картину. За время когерентности  волна распространяется на расстояние

называемое длиной когерентности.

Для наблюдения интерференционной картины обычно используют пучки света от одного источника, но прошедшие разные расстояния до точки наблюдения.

Это означает, что интерферируют волны, испущенные источником в разное время.

Если частота источника «плавает», то при разности хода волн до точки наблюдения  разница во времени испускания волн будет , что означает невозможность наблюдения интерференции.

В качестве примера укажем типичные значения длины когерентности для естественного оптического источника с узкополосным светофильтром с шириной полосы пропускания  вблизи середины видимого диапазона ( нм) и для газового лазера — источника оптического излучения с высокой временной когерентностью, для которого ширина полосы на два-три порядка меньше. В первом случае оценка длины когерентности даёт значение

а во втором случае — для лазера —

4.3 Интерферометр Маха-Цандера.

Таким образом, наблюдение интерференционной картины от обычных оптических источников возможно лишь при малых разностях хода волн, например, при интерференции в тонких пленках, в то время как использование лазерного излучения существенно упрощает эту задачу.

В идеализированном случае при наложении монохроматических воли со строго фиксированными и равными частотами () время и длина когерентности становятся бесконечно большими, поэтому, естественно, в таких условиях интерференционная картина наблюдалась бы при любых разностях хода.

Изменение разности фаз колебаний может происходить не только из-за разбросa частот , но и вследствие разброса волновых векторов .

Поэтому наряду с временной когерентностью, определяемой временем когерентности, вводится понятие пространственной когерентности.

Возникновение в некоторой точке пространства колебаний, возбуждаемых волнами с целым набором различных по направлению векторов , имеет место, если эти волны испускаются различными участками протяженного источника света.

Рассмотрим для определенности светящийся диск АВ, который из точки М виден под углом  (рис. 4.1)

Рис. 4.1. Пространственная когерентность света от протяженного источника:
угол   характеризует разброс волновых векторов Ак 

Угол   характеризует разброс волновых векторов . Таким образом, в фазу электромагнитной волны

надо подставить выражения:

(4.7)

Тогда

так что

(4.8)

где   — проекция радиус-вектора r на направление вектора . В формулах (4.7) и ниже предполагается, что . Вектор , как видно из рисунка, можно считать параллельным протяженному источнику, и, соответственно, фронту волны.

Следовательно, фаза колебаний при переходе от одной точки волновой поверхности к другой изменяется. Введем расстояние , при смещении на которое вдоль волновой поверхности изменение фазы достигает значения :

откуда

(4.9)

Расстояние  характеризует пространственную когерентность волны и называется радиусом когерентности.

4.4 Интерференция двух волн. Бипризма Френеля.

Пусть длина  характеризует пространственное разрешение фотопленки или человеческого глаза. Интерференционный член усредняется по части пространства с линейными размерами порядка . При

среднее значение косинуса равно нулю, что не позволяет наблюдать интерференцию. В противоположном случае, когда

наблюдается чёткая интерференционная картина.

Приведем пример. Угловой размер Солнца

,

примерно в середине видимого диапазона длина волны видимого света

Следовательно, радиус когерентности приходящих от Солнца световых волн примерно равен

При таком малом радиусе когерентности невозможно непосредственно наблюдать интерференцию солнечных лучей, поскольку разрешающая способность человеческого глаза составляет лишь 0.1 мм. Однако в 1807 г. Т.

 Юнг провел первое наблюдение интерференции именно с солнечным светом. Для этого он пропускал солнечные лучи в темную комнату через маленькое отверстие, сделанное тонкой иглой.

Отверстие на несколько порядков уменьшало угловой размер  источника света и, соответственно, увеличивало радиус когерентности.

Дополнительная информация

http://www..com/watch?v=B_adbUr8RHw – Пространственная когерентность. Презентация.

Источник: https://online.mephi.ru/courses/physics/optics/data/course/4/4.2.html

Когерентные волны

Когерентность волн

Когерентные волны – это колебания с постоянной разностью фаз. Разумеется, условие выполняется не в каждой точке пространства, лишь на отдельных участках.

Очевидно, что для удовлетворения определению частоты колебаний также предвидятся равными.

Прочие волны бывают когерентны лишь на некотором участке пространства, а дальше разность фаз меняется, и это определение использовать уже нельзя.

Обоснование применения

Когерентные волны считаются упрощением, не встречающимся на практике. Математическая абстракция помогает во многих отраслях науки: космос, термоядерные и астрофизические исследования, акустика, музыка, электроника и, конечно, оптика.

Для реальных приложений применяются упрощённые методы, в числе последних трёхволновая система, основы применимости кратко изложены ниже. Для анализа взаимодействия возможно задать, к примеру, гидродинамическую или кинетическую модель.

Интерференция волн

Решение уравнений для когерентных волн позволяет предсказать устойчивость систем, функционирующих с использованием плазмы. Теоретический подсчёт показывает, что иногда амплитуда результата за короткое время растёт бесконечно. Что означает создание взрывоопасной ситуации. Решая уравнения для когерентных волн, подбором условий удаётся избежать неприятных последствий.

Определения

Вначале введём ряд определений:

  • Монохроматической называется волна единственной частоты. Ширина её спектра равна нулю. На графике это единственная гармоника.
  • Спектр сигнала – графическое представление амплитуды слагающих гармоник, где по оси абсцисс (ось Х, горизонтальная) откладывается частота. Спектром синусоидального колебания (монохроматической волны) становится единственная спектринка (вертикальная чёрточка).
  • Преобразованиями Фурье (обратным и прямым) называют разложение сложного колебания на монохроматические гармоники и обратное сложение целого из разрозненных спектринок.
  • Волновой анализ цепей для сложных сигналов не проводится. Вместо этого происходит разложение на отдельные синусоидальные (монохроматические) гармоники, для каждой сравнительно просто составить формулы описания поведения. При расчёте на ЭВМ этого хватает для анализа любых ситуаций.
  • Спектр любого непериодического сигнала бесконечен. Границы его обрезаются до разумных пределов перед проведением анализа.
  • Дифракцией называется отклонение луча (волны) от прямолинейной траектории вследствие взаимодействия со средой распространения. К примеру, проявляется при преодолении фронтом щели в препятствии.
  • Интерференцией называется явление сложения волн. Из-за чего наблюдается весьма причудливая картина из чередующихся полос света и тени.
  • Рефракцией называется преломление хода волны на разделе двух сред с различными параметрами.

Волны колебаний

Понятие когерентности

Советская энциклопедия говорит, что волны одинаковой частоты неизменно когерентны. Это верно исключительно для отдельно взятых неподвижных точек пространства. Фаза определяет результат сложения колебаний. К примеру, противофазные волны одной амплитуды дают прямую линию.

Такие колебания гасят друг друга. Самая большая амплитуда у синфазных волн (разность фаз равна нулю).

На этом факте основан принцип действия лазеров, зеркальная и фокусирующая система пучков света, особенности получения излучения делают возможной передачу информации на колоссальные расстояния.

Согласно теории взаимодействия колебаний когерентные волны образуют интерференционную картину. У новичка возникает вопрос: свет лампочки не кажется полосатым.

По простой причине, что излучение не одной частоты, а лежит в пределах отрезка спектра. И участок, причём, приличной ширины.

Из-за неоднородности частот волны беспорядочные, не проявляют свои теоретически и экспериментально в лабораториях обоснованные и доказанные свойства.

Хорошей когерентностью обладает луч лазера. Его используют для связи на дальние расстояния при прямой видимости и прочих целей. Когерентные волны дальше распространяются в пространстве и на приёмнике подкрепляют друг друга. В пучке света разрозненной частоты эффекты способны вычитаться. Возможно подобрать условия, что излучение исходит от источника, но на приёмнике не зарегистрируется.

Обычный свет лампочки тоже работает не на полную мощность. Достичь КПД в 100% на современном этапе развития техники не представляется возможным. К примеру, газоразрядные лампы страдают сильной дисперсией частот.

Что касается светодиодов, основатели концепции нанотехнологий обещали создать элементную базу для производства полупроводниковых лазеров, но напрасно.

Значительная часть разработок засекречена и рядовому обывателю недоступна.

Лишь когерентные волны проявляют волновые качества. Действуют согласованно, как лучинки веника: по одной легко сломать, вместе взятые – выметают мусор. Волновые свойства – дифракция, интерференция и рефракция – характерны для всех колебаний. Просто зарегистрировать эффект сложнее из-за беспорядочности процесса.

Когерентные волны не демонстрируют дисперсии. Показывают одну частоту и одинаково отклоняются призмой. Все примеры волновых процессов в физике даются, как правило, для когерентных колебаний. На практике приходится учитывать присутствующую малую ширину спектра.

Что накладывает особенности на процесс расчёта.

Как зависит реальный результат от относительной когерентности волны – пытаются ответить многочисленные учебники и разрозненные издания с замысловатыми названиями! Единого ответа не существует, он сильно зависит от отдельно взятой ситуации.

Волновые пакеты

Для облегчения решения практической задачи можно ввести, к примеру, определение волнового пакета. Каждый из них разбивается дальше на мелкие части. И эти подразделы взаимодействуют когерентно между аналогичными частотами другого пакета.

Подобный аналитический метод широко распространён в радиотехнике и электронике. В частности, понятие спектра изначально вводилось для того, чтобы дать в руки инженеров надёжный инструмент, позволяющий оценить поведение сложного сигнала в конкретных случаях.

Оценивается малая толика воздействия каждого гармонического колебания на систему, потом конечный эффект находится их полным сложением.

Следовательно, при оценке реальных процессов, не являющихся даже близко когерентными, допустимо разбить объект анализа на простейшие составляющие, чтобы оценить результат процесса. Расчёт упрощается с применением вычислительной техники. Машинные эксперименты показывают достоверность формул для имеющейся ситуации.

На начальном этапе анализа полагают, что пакеты с малой шириной спектра возможно условно заменить гармоническими колебаниями и в дальнейшем пользоваться обратным и прямым преобразованием Фурье для оценки результата.

Эксперименты показали, что разброс фаз между выбранными пакетами постепенно возрастает (колеблется с постепенным увеличением разброса). Но для трёх волн разница постепенно сглаживается, согласуясь с излагаемой теорией.

Накладывается ряд ограничений:

  1. Пространство должно быть бесконечным и однородным (k-пространство).
  2. Амплитуда волны не затухает с увеличением дальности, но меняется с течением времени.

Доказано, что в такой среде каждой волне удаётся подобрать конечный спектр, что автоматически делает возможным машинный анализ, а при взаимодействии пакетов спектр результирующей волны уширяется.

Колебания по сути когерентными не считаются, но описываются уравнением суперпозиции, представленном ниже.

Где волновой вектор ω(k) определяется по дисперсионному уравнению; Еk признано амплитудой гармоники рассматриваемого пакета; k – волновое число; r – пространственная координата, для показателя решается представленное уравнение; t – время.

Уравнение суперпозиции

Время когерентности

В реальной ситуации разнородные пакеты когерентны лишь на отдельном интервале. А далее расхождение фаз становится слишком большим, чтобы применять описанное выше уравнение. Чтобы вывести условия возможности вычислений, вводится понятие времени когерентности.

Полагается, что в начальный момент фазы всех пакетов одинаковы. Выбранные элементарные доли волны когерентны. Тогда искомое время находится как отношение числа Пи к ширине спектра пакета. Если время превысило когерентное, в данном участке уже нельзя использовать формулу суперпозиции для сложения колебаний – фазы слишком сильно отличаются друг от друга. Волна уже не когерентна.

Пакет возможно рассматривать, словно он характеризуется случайной фазой. В этом случае взаимодействие волн идёт по отличающейся схеме. Тогда находятся фурье-компоненты по указанной формуле для дальнейших расчётов.

Причём взятые для расчёта две прочие компоненты берутся из трёх пакетов. Это случай совпадения с теорией, упомянутый выше. Следовательно, уравнение показывает зависимость всех пакетов. Точнее – результата сложения.

Для получения наилучшего результата нужно, чтобы ширина спектра пакета не превышала числа Пи, делённого на время решения задачи суперпозиции когерентных волн. При расстройке частоты амплитуды гармоник начинают осциллировать, точный результат получить сложно.

И наоборот, для двух когерентных колебаний формула сложения упрощается максимально. Амплитуда находится как квадратный корень из суммы исходных гармоник, возведённых в квадрат и сложенных с собственным удвоенным произведением, помноженным на косинус разности фаз.

У когерентных величин угол равен нулю, результат, как уже указано выше, получается максимальным.

Наравне с временем и длиной когерентности используют термин «длина цуга», что является аналогом второго термина. Для солнечного света эта дистанция составляет один микрон.

Спектр нашего светила крайне широкий, что объясняет настолько мизерную дистанцию, где излучение считается когерентным самому себе.

Для сравнения, длина цуга газового разряда достигает 10 см (в 100000 раз больше), а у лазера излучение сохраняет свойства и на километровых расстояниях.

С радиоволнами намного проще. Кварцевые резонаторы позволяют достичь высокой когерентности волны, чем объясняются пятна уверенного приёма на местности, граничащие с зонами молчания.

Аналогичное проявляется при изменении имеющейся картины с течением суток, движением облаков и прочими факторами. Изменяются условия распространения когерентной волны, и интерференционная суперпозиция оказывает влияние в полной мере.

В радиодиапазоне на низких частотах длина когерентности может превышать поперечник Солнечной системы.

Условия сложения сильно зависят от формы фронта. Наиболее просто задача решается для плоской волны. В действительности фронт обычно является сферическим. Точки синфазности находятся на поверхности шара.

В бесконечно удалённой от источника местности условие плоскости возможно принять за аксиому, и дальнейший расчёт вести согласно взятому постулату. Чем ниже частота, тем проще создать условия для выполнения расчёта.

И наоборот, источники света со сферическим фронтом (вспомним Солнце) сложно подогнать под стройную теорию, написанную в учебниках.

Источник: https://VashTehnik.ru/enciklopediya/kogerentnye-volny.html

Когерентность волн

Когерентность волн

Определение 1

Когерентность волн является необходимым условием наблюдения интерференции волн.

Когерентность определяют как согласованность протекания во времени и пространстве нескольких колебаний или волновых процессов.

Иногда используют понятие степени когерентности волн (степени согласованности). Когерентность подразделяют на временную и пространственную.

Этот тип когерентности характеризуют временем и длинной когерентности. Временную когерентность рассматривают тогда, когда источник света точечный, но немонохромный. Так, например, полосы интерференции в интерферометре Майкельсона размываются с увеличением оптической разности хода волн вплоть до исчезновения. Причина этого связана с конечным временем и длиной когерентности источника света.

При рассмотрении вопроса о когерентности возможны два подхода: «фазовый» и «частотный». Пусть частоты в формулах, которые описывают колебания в одной точке пространства, возбуждаемые двумя накладывающийся волнами:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

равны между собой (${\omega }_1={\omega }_2$) и постоянны. Это фазовый подход. Интенсивность света в исследуемой точке пространства при этом определит выражение:

где $\delta \left(t\right)=\alpha_2\left(t\right)-\alpha_1\left(t\right).\ $Выражение $2\sqrt{I_1I_2}cos\delta \left(t\right)$ называют интерференционным членом. Любой прибор, который регистрирует интерференционную картину, имеет время инерции.

Обозначим это время срабатывания прибора через $t_i$. Если за время $t_i$ $cos\delta \left(t\right)$ принимает значения равные от $-1$ до $+1$, то $\left\langle 2\sqrt{I_1I_2}cos\delta \left(t\right)\right\rangle =0$.

При этом суммарная интенсивность в исследуемой точке будет равна:

при этом волны следует считать некогерентными. В том случае, если за время $t_i$ величина $cos\delta \left(t\right)$ почти не изменяется, то интерференцию можно обнаружить и волны следует считать когерентными.

Это значит, что понятие когерентности относительно.

Если инерционность прибора мала, то он может обнаружить интерференцию, тогда как прибор с большим временем инерции при тех же условиях интерференционную картину «не увидит».

Время когерентности ($t{kog}$) определяется как время, в течение которого случайное изменение фазы волны ($\alpha (t)$) примерно равно $\pi .$ За это время ($t{kog}$) колебание становится некогерентным себе. Если выполняется условие:

то прибор интерференции не фиксирует. При $t_i\ll t_{kog}$ интерференционная картина является четкой.

Расстояние, определяемое как:

называют длиной когерентности (длиной цуга). Длиной когерентности называют такое расстояние, при перемещении по которому случайное изменение фазы примерно равно $\pi .$ При делении естественной световой волны на две части, с целью получения интерференционной картины требуется, чтобы оптическая разность хода ($\triangle $) была меньше, чем $l_{kog}.$

Время когерентности связано с интервалом частот ($\triangle u $) или длинами волн, которые представлены в волне света:

Соответственно:

В том случае, если разность оптического хода волн достигла значений около${\ l}_{kog},$ интерференционные полосы не различаются. Предельный порядок интерференции ($m_{pred}$) определим как:

Временная когерентность связывается с разбросом величин модуля волнового числа ($\overrightarrow{k}$).

Пространственная когерентность

В том случае, если источник света характеризуется как монохроматический, но протяженный, то говорят о пространственной когерентности. Пространственная когерентность характеризуется шириной, радиусом и углом когерентности.

Этот тип когерентности связан с вариативностью направлений $\overrightarrow{k}$. Направления вектора $\overrightarrow{k}$ характеризуют с помощью единичного вектора $\overrightarrow{e_k}$.

Расстояние ${\rho }_{kog}$ называют длинной пространственной когерентности (радиусом когерентности), его можно определить как:

где $\varphi $ — угловой размер источника световых волн.

Замечание

Пространственная когерентность волны света около нагретого тела излучения всего несколько длин волн. С увеличением расстояния от источника света степень пространственной когерентности увеличивается.

Формула, с помощью которой устанавливаются угловые размеры протяженного источника, при которых интерференция возможна, имеет вид:

не являются когерентными.

Пример 1

Задание: Каков радиус когерентности световых волн, которые приходят от Солнца, если считать, что угловой размер данного источника равен $0,01 рад$. Длина волн света около $500 нм$.

Решение:

Для оценки радиуса когерентности применим формулу:

\[{\rho }_{kog}\sim \frac{\lambda }{\varphi }\left(1.1\right).\]

Проведем вычисления:

\[{\rho }_{kog}\sim \frac{500\cdot {10}{-9}}{0,01}=5\cdot {10}{-5}\left(м\right).\]

При данном радиусе когерентности невозможно наблюдать интерференцию солнечных лучей без специальных ухищрений. Это не позволяет сделать разрешающая способность глаза человека.

Ответ: ${\rho }_{kog}\sim 50\ мкм$.

Пример 2

Задание: Объясните, почему некогерентны волны, которые испускаются двумя несвязанными источниками света.

Решение:

Некогерентность естественных источников света можно понять, исследуя механизм возникновения излучения света атомами. В двух независимых источниках света атомы испускают волны независимо друг от друга. Каждый атом излучает конечное время примерно около ${10}{-8}секунд$.

За такой период времени возбужденный атом переходит в нормальное состояние, излучение им волны заканчивается. Возбужденный атом испускает свет уже с иной начальной фазой. При этом разности фаз излучений двух подобных атомов является переменной.

Значит волны, которые спонтанно испускают атомы источника света, не когерентны. Только в интервале времени, примерно равном ${10}{-8}с$ волны, которые излучают атомы, имеют почти неизменные амплитуды и фазы.

Такая модель излучения справедлива для любого источника света, который имеет конечные размеры.

Источник: https://spravochnick.ru/fizika/optika/kogerentnost_voln/

Что такое временная когерентность

Данный тип когерентности характеризуется длиной и продолжительностью. Она возникает тогда, когда мы имеем дело с немонохромным точечным источником света.

Примером могут быть полосы, наблюдаемые при интерференции в специальном приборе – интерферометре Майкельсона: чем выше оптическая разность, тем менее четкими становятся полосы (вплоть до полного исчезновения).

Основная причина временной когерентности света лежит в длине источника и конечном времени свечения.

Рассматривать когерентность можно с точки зрения двух подходов. Первый принято называть фазовым, а второй частотным. Фазовый подход заключается в том, что частоты формул, описывающих колебательные процессы в определенной точке пространства, возбуждаемые двумя накладывающимися волнами, будут постоянными и равными друг другу ω1=ω2.

Важно, что δ(t)=α2(t)-α1(t). Здесь выражение 2I1I2cos δ (t) – это так называемый интерференционный член.

Если мы измеряем процесс интерференции каким-либо прибором, необходимо учитывать, что он в любом случае будет иметь время инерции. Время срабатывания прибора можно обозначить как ti. Тогда если за время, равное ti, cos δ (t) будет принимать значения в интервале от минус единицы до плюс единицы, то 2I1I2cos δ t=0.

В таком случае исследуемые волны когерентными не являются. Если же за указанное время величина cos δ (t) сохраняется практически неизменной, то интерференция становится очевидной, и у нас получаются когерентные волны.

Из всего этого можно сделать вывод об относительности понятия когерентности. При малой инерционности прибора интерференция, как правило, обнаруживается, а если прибор обладает большим временем инерции, то нужную картину мы можем просто не увидеть.

Определение 2

Время когерентности, обозначаемое как tkog – это такое время, за которое происходит случайное изменение фазы волны a(t), примерно равное π.

Если ti≪tkog, то в приборе становится видно четную интерференционную картину.

Определение 3

Длина когерентности – это определенное расстояние, при перемещении по которому фаза претерпевает случайное изменение, примерно равное π.

Если мы делим естественную световую волну на две части, то для того, чтобы увидеть интерференцию, нужно сохранить оптическую разность хода меньше, чем lkog.

Время когерентности имеет зависимость от интервала частот, а также от длины волн, представленных в общей световой волне.

Временная когерентность связана с разбросом величин модуля волнового числа k→.

Что такое пространственная когерентность

Если мы имеем дело с монохроматическим протяженным, а не точечным источником света, то здесь вводится понятие пространственной когерентности. Она имеет такие характеристики, как ширина, радиус и угол.

Пространственная когерентность зависит от вариативности направлений вектора k→. Направления данного вектора могут быть охарактеризованы с помощью единичного вектора ek→.

Длина пространственной когерентности, или радиус когерентности, – это расстояние ρkog.

Буквой φ обозначен угловой размер источника световой волны.

Замечание 1

Если волна света располагается вблизи нагретого тела, то ее пространственная когерентность составляет всего несколько длин волн. Чем больше расстояние от источника света, тем выше степень пространственной когерентности.

Пример 1

Условие: допустим, что угловой размер Солнца равен 0,01 рад. Оно испускает волны света, равные 500 нм. Вычислите радиус когерентности данных волн.

Решение

Чтобы оценить радиус когерентности, воспользуемся формулой ρkog~λφ. Вычисляем:

ρkog~500·10-90,01=5·10-5 (м).

Интерференция солнечных лучей не может быть видна невооруженным взглядом, поскольку радиус ее когерентности очень мал и находится вне разрешающей способности человеческого глаза.

Ответ: ρkog~50 мкм.

Пример 2

Условие: если два не связанных между собой источника света испускают волны, почему данные волны не будут когерентными?

Решение

Чтобы дать объяснение этому явлению, обратимся к механизму возникновения излучения на атомном уровне. Если источники света независимы, то атомы в них испускают световые волны также независимо.

Продолжительность излучения каждого атома равна примерно 10-8 cек, после чего атом возвращается в обычное состояние, и излучение волны прекращается. Возбужденный атом будет испускать свет с изначально другой фазой, значит, разности фаз излучений двух подобных атомов будут переменными.

Следовательно, волны, спонтанно испускающие свет, не являются когерентными. Данная модель будет справедливой для любых источников света с конечными размерами.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/fizika/volnovaja-optika/kogerentnost-voln/

Когерентность

Когерентность волн

Когерентность (от латинского cohaerens — находящийся в связи), согласованное протекание во времени нескольких колебательных или волновых процессов, проявляющееся при их сложении.

Колебания называются когерентными, если разность их фаз остаётся постоянной во времени и при сложении колебаний определяет амплитуду суммарного колебания. Два гармонических (синусоидальных) колебания одной частоты всегда когерентны.

Гармоническое колебание описывается выражением:

  х = A cos (2pvt + j), (1)

  где х — колеблющаяся величина (например, смещение маятника от положения равновесия, напряжённость электрического и магнитного полей и т.д.).

Частота гармонического колебания, его амплитуда А и фаза j постоянны во времени.

При сложении двух гармонических колебаний с одинаковой частотой v, но разными амплитудами A1 и А2 и фазами j1 и j2, образуется гармоническое колебание той же частоты. Амплитуда результирующего колебания:

  (2)

  может изменяться в пределах от A1 + А2 до А1 — А2 в зависимости от разности фаз j1 — j2 (). Интенсивность результирующего колебания, пропорциональная Ар2 также зависит от разности фаз.

  В действительности идеально гармонические колебания неосуществимы, так как в реальных колебательных процессах амплитуда, частота и фаза колебаний непрерывно хаотически изменяются во времени. Результирующая амплитуда Ар существенно зависит от того, как быстро изменяется разность фаз.

Если эти изменения столь быстры, что не могут быть замечены прибором, то измерить можно только среднюю амплитуду результирующего колебания . При этом, т.к. среднее значение cos (j1—j2) равно 0, средняя интенсивность суммарного колебания равна сумме средних интенсивностей исходных колебаний:  и, таким образом, не зависит от их фаз.

Исходные колебания являются некогерентными. Хаотические быстрые изменения амплитуды также нарушают К. .

  Если же фазы колебаний j1 и j2 изменяются, но их разность j1 — j2 остается постоянной, то интенсивность суммарного колебания, как в случае идеально гармонических колебаний, определяется разностью фаз складываемых колебаний, то есть имеет место К. Если разность фаз двух колебаний изменяется очень медленно, то говорят, что колебания остаются когерентными в течение некоторого времени, пока их разность фаз не успела измениться на величину, сравнимую с p.

Можно сравнить фазы одного и того же колебания в разные моменты времени t1 и t2, разделённые интервалом t. Если негармоничность колебания проявляется в беспорядочном, случайном изменении во времени его фазы, то при достаточно большом t изменение фазы колебания может превысить p.

Это означает, что через время t гармоническое колебание «забывает» свою первоначальную фазу и становится некогерентным «само себе». Время t называется временем К. негармонического колебания, или продолжительностью гармонического цуга.

По истечении одного гармонического цуга он как бы заменяется другим с той же частотой, но др. фазой.

  При распространении плоской монохроматической электромагнитной волны в однородной среде напряжённость электрического поля Е вдоль направления распространения этой волны ох в момент времени t равна:

   (3)

  где l = сТ— длина волны, с — скорость её распространения, Т — период колебаний. Фаза колебаний в какой-нибудь определённой точке пространства сохраняется только в течение времени К. т.

За это время волна распространится на расстояние сt и колебания Е в точках, удалённых друг от друга на расстояние сt, вдоль направления распространения волны, оказываются некогерентными.

Расстояние, равное сt вдоль направления распространения плоской волны на котором случайные изменения фазы колебаний достигают величины, сравнимой с p, называют длиной К., или длиной цуга.

  Видимый солнечный свет, занимающий на шкале частот электромагнитных волн диапазон от 4Ч1014 до 8Ч1014 гц, можно рассматривать как гармоническую волну с быстро меняющимися амплитудой, частотой и фазой. При этом длина цуга ~ 10—4 см. Свет, излучаемый разреженным газом в виде узких спектральных линий более близок к монохроматическому.

Фаза такого света практически не меняется на расстоянии 10 см. Длина цуга лазерного излучения может превышать километры. В диапазоне радиоволн существуют более монохроматические источники колебаний (см. Кварцевый генератор, Квантовые стандарты частоты), а длина волн l во много раз больше, чем для видимого света.

Длина цуга радиоволн может значительно превышать размеры Солнечной системы.

  Всё сказанное справедливо для плоской волны. Однако идеально плоская волна так же неосуществима, как и идеально гармоническое колебание (см. Волны). В реальных волновых процессах амплитуды и фаза колебаний изменяются не только вдоль направления распространения волны, но и в плоскости, перпендикулярной этому направлению.

Случайные изменения разности фаз в двух точках, расположенных в этой плоскости, увеличиваются с увеличением расстояния между ними. К. колебаний в этих точках ослабевает и на некотором расстоянии l, когда случайные изменения разности фаз становятся сравнимыми с p, исчезают.

Для описания когерентных свойств волны, в плоскости, перпендикулярной направлению ее распространения, применяют термин пространственная К., в отличие от временной К., связанной со степенью монохроматичности волны. Все пространство, занимаемое волной, можно разбить на области, в каждой из которых волна сохраняет К. Объём такой области (объём К.

) приблизительно равен произведению длины цуга сt на площадь круга диаметром / (размер пространственной К.).

  Нарушение пространственной К. связано с особенностями процессов излучения и формирования волн. Например, пространственная К. световой волны, излучаемой протяжённым нагретым телом, исчезает на расстоянии от его поверхности всего в несколько длин волн, т.к. разные части нагретого тела излучают независимо друг от друга (см. Спонтанное излучение).

В результате вместо одной плоской волны источник излучает совокупность плоских волн, распространяющихся по всем возможным направлениям. По мере удаления от теплового источника (конечных размеров), волна все больше и больше приближается к плоской. Размер пространственной К. l растет пропорционально l  — где R — расстояние до источника, r — размеры источника.

Это позволяет наблюдать интерференцию света звёзд, несмотря на то, что они являются тепловыми источниками огромных размеров. Измеряя / для света от ближайших звёзд, удаётся определить их размеры r. Величину l/r называют углом К. С удалением от источника интенсивность света убывает как 1/R2.

Поэтому с помощью нагретого тела нельзя получить интенсивное излучение, обладающее большой пространственной К.

  Световая волна, излучаемая лазером,формируется в результате согласованного вынужденного излучения света во всем объеме активного вещества. Поэтому пространственная К. света у выходного отверстия лазера сохраняется во всем поперечном сечении луча.

Лазерное излучение обладает огромной пространственной К., т. е. высокой направленностью по сравнению с излучением нагретого тела. С помощью лазера удаётся получить свет, объём К. которого в 1017 раз превышает объём К.

световой волны той же интенсивности, полученной от наиболее монохроматических нелазерных источников света.

  В оптике наиболее распространённым способом получения двух когерентных волн является расщепление волны, излучаемой одним немонохроматическим источником, на две волны, распространяющиеся по разным путям, но, в конце концов, встречающихся в одной точке, где и происходит их сложение (рис. 2).

Если запаздывание одной волны по отношению к другой, связанное с разностью пройденных ими путей, меньше продолжительности цуга, то колебания в точке сложения будут когерентными и будет наблюдаться интерференция света. Когда разность путей двух волн приближается к длине цуга, К. лучей ослабевает.

Колебания освещённости экрана уменьшаются, освещённость I стремится к постоянной величине, равной сумме интенсивностей двух волн, падающих на экран. В случае неточечного (протяжённого) теплового источника два луча, пришедшие в точки А и В, могут оказаться некогерентными из-за пространственной некогерентности излучаемой волны.

В этом случае интерференция не наблюдается, так как интерференционные полосы от разных точек источника смещены относительно друг друга на расстояние, большее ширины полосы.

  Понятие К., возникшее первоначально в классической теории колебаний и волн, применяется также по отношению к объектам и процессам, описываемым квантовой механикой (атомные частицы, твёрдые тела и т.д.).

  Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957; Горелик Г. С., Колебания и волны, 2 изд., М., 1959; Фабрикант В. А., Новое о когерентности, «Физика в школе», 1968, № 1; Франсон М., Сланский С., Когерентность в оптике, пер. с франц., М., 1968; Мартинсен В., Шпиллер Е., Что такое когерентность, «Природа», 1968, № 10.

  А. В. Францессон.

Рис. 1. Сложение 2 гармонических колебаний (пунктир) с амплитудами A1 и А2 при различных разностях фаз. Результирующее колебание — сплошная линия.

Рис. 2. Простейшее устройство, позволяющее получить две когерентные волны (интерферометр). Заслонка препятствует прямому прохождению света от источника к экрану.

Оглавление БСЭ

Источник: https://www.booksite.ru/fulltext/1/001/008/062/372.htm

Booksm
Добавить комментарий