Как найти векторное произведение векторов

Содержание
  1. Как найти векторное произведение векторов
  2. Понятие векторного произведения векторов и формула нахождения
  3. Вычисление векторного произведения по координатам векторов
  4. Свойства векторного произведения векторов
  5. Векторное произведение — определения, свойства, формулы, примеры и решения
  6. Определение векторного произведения
  7. Вы знаете, что такое векторное произведение векторов? Тогда вы знаете половину всей физики!
  8. Итак, векторное произведение векторов
  9. И вот существует такая операция над векторами, называемая «векторное произведение векторов»
  10. Зачем нужна операция векторного произведения векторов, определенная выше?
  11. Векторное произведение векторов
  12. Формула
  13. Свойства
  14. Примеры решений
  15. Геометрический смысл
  16. Вектор: определение, сложение, умножение, скалярное и векторное произведение
  17. Векторные компоненты
  18. Единичный вектор
  19. Сложение векторов
  20. Умножение вектора на скаляр
  21. Скалярное произведение двух векторов
  22. Векторное произведение двух векторов
  23. Смешанное произведение трех векторов
  24. Векторное произведение: определения, свойства, формулы, примеры и решения
  25. Координаты векторного произведения
  26. Свойства векторного произведения
  27. Векторное произведение – примеры и решения
  28. Геометрический смысл векторного произведения
  29. Физический смысл векторного произведения

Как найти векторное произведение векторов

Как найти векторное произведение векторов

Для того чтобы мы могли ввести понятие векторного произведения двух векторов, нужно сначала разобраться с таким понятие, как угол между этими векторами.

Пусть нам даны два вектора $\overline{α}$ и $\overline{β}$. Возьмем в пространстве какую-либо точку $O$ и отложим от нее векторы $\overline{α}=\overline{OA}$ и $\overline{β}=\overline{OB}$, тогда угол $AOB$ будет называться углом между этими векторами (рис. 1).

Рисунок 1. Угол между векторами. Автор24 — интернет-биржа студенческих работ

Причем мы будем считать, что если векторы $\overline{α}$ и $\overline{β}$ будут сонаправленными, или один или оба из них нулевой, то угол между этими векторами будет равен $0\circ$.

Обозначение: $∠(\overline{α},\overline{β})$

Понятие векторного произведения векторов и формула нахождения

Определение 1

Векторным произведением двух векторов называется вектор, перпендикулярный обоим данным векторам, и его длина будет равняться произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют туже ориентацию, как и декартова система координат.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Обозначение: $\overline{α}х\overline{β}$.

Математически это выглядит следующим образом:

  1. $|\overline{α}х\overline{β}|=|\overline{α}||\overline{β}|sin⁡∠(\overline{α},\overline{β})$
  2. $\overline{α}х\overline{β}⊥\overline{α}$, $\overline{α}х\overline{β}⊥\overline{β}$
  3. $(\overline{α}х\overline{β},\overline{α},\overline{β})$ и $(\overline{i},\overline{j},\overline{k})$ одинаково ориентированы (рис. 2)

Рисунок 2. Произведение векторов. Автор24 — интернет-биржа студенческих работ

Очевидно, что внешнее произведение векторов будет равняться нулевому вектору в двух случаях:

  1. Если длина одного или обоих векторов равняется нулю.
  2. Если угол между этими векторами будет равняться $180\circ$ или $0\circ$ (так как в этом случае синус равняется нулю).

Чтобы наглядно увидеть, как находится векторное произведение векторов, рассмотрим следующие примеры решения.

Пример 1

Найти длину вектора $\overline{δ}$, который будет являться результатом векторного произведения векторов, с координатами $\overline{α}=(0,4,0)$ и $\overline{β}=(3,0,0)$.

Решение.

Изобразим эти векторы в декартовом координатном пространстве (рис. 3):

Рисунок 3. Векторы в декартовом координатном пространстве. Автор24 — интернет-биржа студенческих работ

Видим, что эти векторы лежат на осях $Ox$ и $Oy$, соответственно. Следовательно, угол между ними будет равняться $90\circ$. Найдем длины этих векторов:

$|\overline{α}|=\sqrt{0+16+0}=4$

$|\overline{β}|=\sqrt{9+0+0}=3$

Тогда, по определению 1, получим модуль $|\overline{δ}|$

$|\overline{δ}|=|\overline{α}||\overline{β}|sin90\circ=4\cdot 3\cdot 1=12$

Ответ: $12$.

Вычисление векторного произведения по координатам векторов

Из определения 1 сразу же вытекает и способ нахождения векторного произведения для двух векторов. Поскольку вектор кроме значения имеет еще и направление, находить его только при помощи скалярной величины невозможно. Но помимо него существует еще способ нахождения с помощью координат данных нам векторов.

Пусть нам даны векторы $\overline{α}$ и $\overline{β}$, которые будут иметь координаты $(α_1,α_2,α_3)$ и $(β_1,β_2,β_3)$, соответственно. Тогда вектор векторного произведения (а именно его координаты) можно найти по следующей формуле:

$\overline{α}х\overline{β}=\begin{vmatrix}\overline{i}&\overline{j}&\overline{k}\\α_1&α_2&α_3\\β_1&β_2&β_3\end{vmatrix}$

Иначе, раскрывая определитель, получим следующие координаты

$\overline{α}х\overline{β}=(α_2 β_3-α_3 β_2,α_3 β_1-α_1 β_3,α_1 β_2-α_2 β_1)$

Пример 2

Найти вектор векторного произведения коллинеарных векторов $\overline{α}$ и $\overline{β}$ с координатами $(0,3,3)$ и $(-1,2,6)$.

Решение.

Воспользуемся формулой, приведенной выше. Получим

$\overline{α}х\overline{β}=\begin{vmatrix}\overline{i}&\overline{j}&\overline{k}\\0&3&3\\-1&2&6\end{vmatrix}=(18-6)\overline{i}-(0+3)\overline{j}+(0+3)\overline{k}=12\overline{i}-3\overline{j}+3\overline{k}=(12,-3,3)$

Ответ: $(12,-3,3)$.

Свойства векторного произведения векторов

Для произвольных смешанных трех векторов $\overline{α}$, $\overline{β}$ и $\overline{γ}$, а также $r∈R$ справедливы следующие свойства:

  1. $\overline{α}х\overline{β}=-(\overline{β}х\overline{α})$

    Верность этого свойства будет следовать из третьего пункта определения 1.

  2. $(r\overline{α})х\overline{β}=r(\overline{α}х\overline{β})$ и $\overline{α}х(r\overline{β})=r(\overline{α}х\overline{β})$

    Из формулы для нахождения векторного произведения будем получать:

    $(r\overline{α})\overline{β}=\begin{vmatrix}\overline{i}&\overline{j}&\overline{k}\\rα_1&rα_2&rα_3\\β_1&β_2&β_3\end{vmatrix}=r\begin{vmatrix}\overline{i}&\overline{j}&\overline{k}\\α_1&α_2&α_3\\β_1&β_2&β_3\end{vmatrix}=r(\overline{α}х\overline{β})$

    $\overline{α}х(r\overline{β})=\begin{vmatrix}\overline{i}&\overline{j}&\overline{k}\\α_1&α_2&α_3\\rβ_1&rβ_2&rβ_3\end{vmatrix}=r\begin{vmatrix}\overline{i}&\overline{j}&\overline{k}\\α_1&α_2&α_3\\β_1&β_2&β_3\end{vmatrix}=r(\overline{α}х\overline{β})$

  3. $\overline{α}х(\overline{β}+\overline{γ})=\overline{α}\overline{β}+\overline{α}\overline{γ}$ и $(\overline{α}+\overline{β})\overline{γ}=\overline{α}\overline{γ}+\overline{β}\overline{γ}$.

    Данное свойство векторного произведения векторов также можно проверить с помощью формулы.

    Следующее свойство называют геометрическим смыслом векторного произведения:

  4. Длина вектора векторного произведения равняется площади параллелограмма, который нужно было построить между ними (рис. 4)

    Рисунок 4. Длина вектора векторного произведения. Автор24 — интернет-биржа студенческих работ

Пример 3

Найдите площадь параллелограмма, вершины которого имеют координаты $(3,0,0)$, $(0,0,0)$, $(0,8,0)$ и $(3,8,0)$.

Решение.

Вначале изобразим данный параллелограмм в координатном пространстве (рис.5):

Рисунок 5. Параллелограмм в координатном пространстве. Автор24 — интернет-биржа студенческих работ

Видим, что две стороны этого параллелограмма построены с помощью коллинеарных векторов с координатами $\overline{α}=(3,0,0)$ и $\overline{β}=(0,8,0)$. Используя четвертое свойство, получим:

$S=|\overline{α}х\overline{β}|$

Найдем вектор $\overline{α}х\overline{β}$:

$\overline{α}х\overline{β}=\begin{vmatrix}\overline{i}&\overline{j}&\overline{k}\\3&0&0\\0&8&0\end{vmatrix}=0\overline{i}-0\overline{j}+24\overline{k}=(0,0,24)$

Следовательно

$S=|\overline{α}х\overline{β}|=\sqrt{0+0+242}=24$

Ответ: $24$.

Источник: https://spravochnick.ru/geometriya/vektory/kak_nayti_vektornoe_proizvedenie_vektorov/

Векторное произведение — определения, свойства, формулы, примеры и решения

Как найти векторное произведение векторов
Векторы, действия с векторами

В этой статье мы подробно остановимся на понятии векторного произведения двух векторов.

Мы дадим необходимые определения, запишем формулу для нахождения координат векторного произведения, перечислим и обоснуем его свойства.

После этого остановимся на геометрическом смысле векторного произведения двух векторов и рассмотрим решения различных характерных примеров.

Определение векторного произведения

Прежде чем дать определение векторного произведения, разберемся с ориентацией упорядоченной тройки векторов в трехмерном пространстве.

Отложим векторы от одной точки. В зависимости от направления вектора тройка может быть правой или левой. Посмотрим с конца вектора на то, как происходит кратчайший поворот от вектора к . Если кратчайший поворот происходит против часовой стрелки, то тройка векторов называется правой, в противном случае – левой.

Теперь возьмем два не коллинеарных вектора и . Отложим от точки А векторы и . Построим некоторый вектор , перпендикулярный одновременно и и . Очевидно, что при построении вектора мы можем поступить двояко, задав ему либо одно направление, либо противоположное (смотрите иллюстрацию).

В зависимости от направления вектора упорядоченная тройка векторов может быть правой или левой.

Так мы вплотную подошли к определению векторного произведения. Оно дается для двух векторов, заданных в прямоугольной системе координат трехмерного пространства.

Векторным произведением двух векторов и , заданных в прямоугольной системе координат трехмерного пространства, называется такой вектор , что

  • он является нулевым, если векторы и коллинеарны;
  • он перпендикулярен и вектору и вектору ();
  • его длина равна произведению длин векторов и на синус угла между ними ();
  • тройка векторов ориентирована так же, как и заданная система координат.

Векторное произведение векторов и обозначается как .

К началу страницы

Сейчас дадим второе определение векторного произведения, которое позволяет находить его координаты по координатам заданных векторов и .

В прямоугольной системе координат трехмерного пространства векторное произведение двух векторов и есть вектор , где — координатные векторы.

Это определение дает нам векторное произведение в координатной форме.

Векторное произведение удобно представлять в виде определителя квадратной матрицы третьего порядка, первая строка которой есть орты , во второй строке находятся координаты вектора , а в третьей – координаты вектора в заданной прямоугольной системе координат:

Если разложить этот определитель по элементам первой строки, то получим равенство из определения векторного произведения в координатах (при необходимости обращайтесь к статье вычисление определителя матрицы):

Следует отметить, что координатная форма векторного произведения полностью согласуется с определением, данным в первом пункте этой статьи. Более того, эти два определения векторного произведения эквивалентны. Доказательство этого факта можете посмотреть в книге, указанной в конце статьи.

К началу страницы

Так как векторное произведение в координатах представимо в виде определителя матрицы , то на основании свойств определителя легко обосновываются следующие свойства векторного произведения:

  1. антикоммутативность ;
  2. свойство дистрибутивности или ;
  3. сочетательное свойство или , где — произвольное действительное число.

Для примера докажем свойство антикоммутативности векторного произведения.

По определению и . Нам известно, что значение определителя матрицы изменяется на противоположное, если переставить местами две строки, поэтому, , что доказывает свойство антикоммутативности векторного произведения.

К началу страницы

В основном встречаются три типа задач.

В задачах первого типа заданы длины двух векторов и угол между ними, а требуется найти длину векторного произведения. В этом случае используется формула .

Найдите длину векторного произведения векторов и , если известно .

Мы знаем из определения, что длина векторного произведения векторов и равна произведению длин векторов и на синус угла между ними, поэтому, .

.

Задачи второго типа связаны с координатами векторов, в них векторное произведение, его длина или что-либо еще ищется через координаты заданных векторов и .

Здесь возможна масса различных вариантов. К примеру, могут быть заданы не координаты векторов и , а их разложения по координатным векторам вида и , или векторы и могут быть заданы координатами точек их начала и конца.

Рассмотрим характерные примеры.

В прямоугольной системе координат заданы два вектора . Найдите их векторное произведение.

По второму определению векторное произведение двух векторов в координатах записывается как:

К такому же результату мы бы пришли, если бы векторное произведение записали через определитель

.

Найдите длину векторного произведения векторов и , где — орты прямоугольной декартовой системы координат.

Сначала найдем координаты векторного произведения в заданной прямоугольной системе координат.

Так как векторы и имеют координаты и соответственно (при необходимости смотрите статью координаты вектора в прямоугольной системе координат), то по второму определению векторного произведения имеем

То есть, векторное произведение имеет координаты в заданной системе координат.

Длину векторного произведения находим как корень квадратный из суммы квадратов его координат (эту формулу длины вектора мы получили в разделе нахождение длины вектора):

.

В прямоугольной декартовой системе координат заданы координаты трех точек . Найдите какой-нибудь вектор, перпендикулярный и одновременно.

Векторы и имеют координаты и соответственно (смотрите статью нахождение координат вектора через координаты точек). Если найти векторное произведение векторов и , то оно по определению является вектором, перпендикулярным и к и к , то есть, является решением нашей задачи. Найдем его

— один из перпендикулярных векторов.

В задачах третьего типа проверяется навык использования свойств векторного произведения векторов. После применения свойств, применяются соответствующие формулы.

Векторы и перпендикулярны и их длины равны соответственно 3 и 4. Найдите длину векторного произведения .

По свойству дистрибутивности векторного произведения мы можем записать

В силу сочетательного свойства вынесем числовые коэффициенты за знак векторных произведений в последнем выражении:

Векторные произведения и равны нулю, так как и , тогда .

Так как векторное произведение антикоммутативно, то .

Итак, с помощью свойств векторного произведения мы пришли к равенству .

По условию векторы и перпендикулярны, то есть угол между ними равен . То есть, у нас есть все данные для нахождения требуемой длины

.

К началу страницы

По определению длина векторного произведения векторов равна . А из курса геометрии средней школы нам известно, что площадь треугольника равна половине произведения длин двух сторон треугольника на синус угла между ними.

Следовательно, длина векторного произведения равна удвоенной площади треугольника, имеющего сторонами векторы и , если их отложить от одной точки. Другими словами, длина векторного произведения векторов и равна площади параллелограмма со сторонами и и углом между ними, равным .

В этом состоит геометрический смысл векторного произведения.

В прямоугольной декартовой системе координат дан параллелограмм ABCD, . Используя векторное произведение, определите площадь треугольника АВD и площадь параллелограмма АВCD.

Обозначим площадь треугольника АВD через , а площадь параллелограмма . В геометрическом смысле длина векторного произведения равна площади параллелограмма АВCD, то есть, , следовательно, . Итак, решение задачи свелось к нахождению длины векторного произведения.

Для этого сначала определяем координаты векторов и :

Теперь по их координатам находим векторное произведение

Вычисляем длину векторного произведения по его координатам .

Таким образом, и .

.

К началу страницы

В механике с помощью векторного произведения вычисляется момент силы относительно точки пространства.

Моментом силы , приложенной к точке B, относительно точки А называется векторное произведение .

В прямоугольной декартовой системе координат даны точки . К точке В приложена сила . Найти — момент силы относительно точки А.

Вектор имеет координаты . По определению

.

  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.

Некогда разбираться?

Закажите решение

К началу страницы

Источник: http://www.cleverstudents.ru/vectors/vector_product_of_vectors.html

Вы знаете, что такое векторное произведение векторов? Тогда вы знаете половину всей физики!

Как найти векторное произведение векторов

Из всех операций, которые можно применять для решения физических задач, есть одна, знание которой позволяет практически «в уме» решать множество задач про электромагнитные силы и поля, вращение твердых тел и много-много других.

Более того, понимание сути данной математической операции ставит вас на целую голову выше остальных, в понимании физики.

На первый взгляд странная операция при ближайшем рассмотрении оказывается очень простой.

Итак, векторное произведение векторов

Но вначале кое-что важное.

Очень важное замечание!Здесь и в дальнейшем (и в предыдущем изложении) мы всегда рассматриваем «Правую» систему координат.

Правая система координат! Берем правую руку. Раскрываем ладонь перед собой. Оттопыриваем большой палец – это положительное направление оси X.

Четыре пальца перпендикулярных большому показывают положительное направление оси Y.

Тогда из открытой ладони прямо на вас перпендикулярно осям X, Y будет выходить положительное направление оси Z.

Сильно хлопаем себя открытой ладонью правой руки по лбу! Навсегда запоминаем правильное расположение системы координат.

Если рисовать неправильную систему, то будут ошибки.

Итак, определим векторное произведение векторов:

Возьмем нашу правую систему координат и зададим три единичных вектора, по одному вдоль каждой из осей.

Тогда любой вектор

можно записать в виде суммы трех векторов

Легко заметить, что скалярные произведения наших единичных векторов

Эта удобная тройка векторов очень пригодится нам в дальнейшем.

Помним! Вектора при переходе от одной системы координат к другой не меняются. И результаты векторных операций при переходе от одной системы координат к другой также не меняются!

И вот существует такая операция над векторами, называемая «векторное произведение векторов»

«Ну и ну! Как это? Для чего?»

Все очень просто!

Для начала убедимся, что векторные произведения наших единичных векторов между собой:

Надеюсь, все уже увидели, что от перемены местами сомножителей меняется знак векторного произведения?

Поиграв с единичными векторами, убедитесь что векторное произведение двух векторов дает в результате вектор, перпендикулярный плоскости, в которой лежат вектора сомножители, а по модулю равный площади параллелограмма, ограниченного векторами сомножителями!

Всегда во всех задачах выбирайте правую систему координат так, чтобы было просто и удобно! Как на картинке выше.

Зачем нужна операция векторного произведения векторов, определенная выше?

Рассмотрим задачу «о рычагах».

Пусть у нас есть твердое тело, представляющее из себя систему из трех стержней, жестко скрепленных в одной точке. И эта точка закреплена в пространстве так, что она является центром вращения («точка закрепления шарнира»). Как на рисунке ниже.

К концам стержней приложены силы

Силы создают вектора моментов сил – «крутящие моменты», приложенные к нашему твердому телу.

Момент силы — это модуль вектора момента силы. Синонимы вектора момента силы: крутящий момент, вращательный момент, вертящий момент, вращающий момент).

Наглядно представить себе вектор момента силы можно следующим образом: Представьте себе юлу (детскую игрушку «волчок»). Чем сильнее мы его закрутим за ось, тем быстрее и дольше он вращается.

Закрепим ось волчка на какой-то прямой так, чтобы она могла свободно вращаться. Представьте теперь, что вы будете тянуть за тело волчка, стараясь повернуть его вокруг закрепленной оси. А ваш товарищ будет пытаться удержать ось рукой.

Представили?

Будет ли волчок поворачиваться вокруг оси?

И если вы будете тянуть его в одну сторону, а ваш товарищ в другую, то в какую сторону будет поворачиваться волчок?

В ту, чья сила больше?

Не совсем.

Представим ситуацию на картинке выше. Вы взялись ближе к оси, а ваш товарищ взялся за диск. Если ось достаточно тонкая, а диск достаточно большой, то как бы вы ни старались, волчок будет поворачиваться в сторону вашего товарища. Хотя силу вы приложите гораздо большую, чем он.

«Рычаг», скажете вы. И будете правы!

Задача о рычагах по сути аналогична. И решается она очень просто с использованием операции векторного произведения, которую мы с вами рассмотрели выше.

Из формул (74) — (76) мы знаем, что векторное произведение двух векторов есть вектор, который по направлению перпендикулярен плоскости, в которой лежат вектора сомножители. Величину этого вектора по модулю можно вычислить с учетом формул (71) – (73), а модуль вычисляется по простой формуле:

Так вот, вектор момента силы, приложенной к телу, равен векторному произведению радиус-вектора точки приложения силы умноженному на вектор силы.

Начало координат удобнее выбирать в точке закрепления тела на шарнире (например, в точке подвеса перекладины рычажных весов). Можно в любой другой.

Но мы с вами начало координат всегда берем в точке, относительно которой тело может поворачиваться. Потому, что так проще вычисления.

Складывая вектора моментов всех приложенных к телу сил мы автоматически находим результирующий вектор, который и определяет в какую сторону и насколько интенсивно будет вращаться наша тройная гантель, показанная на рисунке выше.

Вдумайтесь! Мы просто складываем три вектора момента, от каждой из сил.

Если сумма равна нулю, то наше твердое тело «стоит на месте». Если не равна нулю, то наше тело имеет ненулевой момент сил относительно «точки подвеса» в плоскости, перпендикулярной нашему вектору суммы моментов.

И угловое ускорение, которое пропорционально модулю этого вектора.

Можно обобщить задачу на произвольное твердое тело с закрепленной в пространстве точкой подвеса и неограниченным количеством приложенных сил, как показано на рисунке. ниже.

Оно будет вращаться относительно оси, в которой лежит наш результирующий вектор момента сил.

И вращение будет тем интенсивнее, чем больше этот результирующий вектор по модулю.

Направление вращения будет зависеть от направления этого вектора. Направлен в одну сторону, вращается тело в одну сторону, направлен в другую, тело вращается в обратную.

Причем, если тело закрепить на оси, как в случае рассмотренного нами волчка, то задача становится двумерной. Вращение может быть только относительно оси и, соответственно, можно рассматривать моменты сил, только в системе координат, перпендикулярной оси. Это вы можете рассмотреть сами.

Вопрос:каково условие невращения твердого тела в общем случае, показанном на рисунке 11? Другими словами, при каких условиях общий (суммарный) момент вращения тела равен нулю? Ответ:Если сумма моментов всех сил равна нулю, то тело находится во «вращательном равновесии» — т.е. не имеет суммарного момента вращения.

Эта задача – более общая по отношению к школьной задаче о рычагах, изображенной на рисунке ниже.

Благодаря определенной нами операции векторного произведения векторов задача решается в одно действие.

Решите ее самостоятельно!

Или посмотрите решение в нашем учебнике.

Первому, кто ответит на вопрос, почему ось вращения вращающегося волчка (Юлы) обычно не «стоит» строго параллельно, а совершает некие колебания вокруг некой оси, получит в подарок цифровую ручку от нашего спонсора. Ответы можете писать на странице в .

Так же, как всегда, получит подарок тот, кто первым найдет принципиальную ошибку в изложении материала.

Ну и как всегда ставьте лайки и подписывайтесь на канал!

Источник: https://zen.yandex.ru/media/id/5aec3f5edd248401aaf986db/5b17f1cb865165b0726dcb71

Векторное произведение векторов

Как найти векторное произведение векторов

Определение
Векторным произведением векторов $ \overline{a} $ и $ \overline{b} $ является вектор $ \overline{c} $, который расположен перпендикулярно к плоскости, образуемой векторами $ \overline{a} $ и $ \overline{b} $. Само произведение обозначается как $ [\overline{a},\overline{b}] $, либо $ \overline{a} \times \overline{b} $.

Векторное произведение векторов, формула которого зависит от исходных данных задачи, можно найти двумя способами.

Формула

Формула 1
Если известен синус угла между векторами $ \overline{a} $ и $ \overline{b} $, то найти векторное произведение векторов можно по формуле:$$ [\overline{a},\overline{b}] = |\overline{a}| \cdot |\overline{b}| \cdot \sin (\overline{a},\overline{b}) $$
Формула 2
В случае когда векторы $ \overline{a} $ и $ \overline{b} $ заданы в координатной форме, то их произведение определяется по формуле:$$ \overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} $$где векторы $ \overline{i},\overline{j},\overline{k} $ называются единичными векторами соответствующих осей $ Ox, Oy, Oz $.

Определитель во второй формуле можно раскрыть по первой строке:

$$ \overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \overline{i} (a_2 b_3 — a_3 b_2) — \overline{j} (a_1 b_3 — a_3 b_1) + \overline{k} (a_1 b_2 — a_2 b_1) $$

Итого вторая формула приобретает окончательный короткий вид:

$$ \overline{a} \times \overline{b} = (a_2 b_3 — a_3 b_2; a_3 b_1 — a_1 b_3; a_1 b_2 — a_2 b_1) $$

Свойства

  1. При изменении порядка множителей меняется знак на противоположный: $$ [\overline{a},\overline{b}] = -[\overline{b},\overline{a}] $$
  2. Вынос константы за знак произведения: $$ \lambda [\overline{a},\overline{b}] = [\lambda \overline{a}, \overline{b}] = [\overline{a}, \lambda \overline{b}] $$
  3. $$ [\overline{a}+\overline{b}, \overline{c}] = [\overline{a},\overline{c}] + [\overline{b}, \overline{c}] $$

Примеры решений

Пример 1
Найти векторное произведение векторов, заданных координатами$$ \overline{a} = (2,1,-3) $$ $$ \overline{b} = (1,2,-1) $$
Решение
Составляем определитель, первая строка которого состоит из единичных векторов, а вторая и третья из координат векторов $ \overline{a} $ и $ \overline{b} $:$$ \overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2&1&-3\\1&2&-1 \end{vmatrix} = \overline{i} (-1+6) — \overline{j}(-2+3) + \overline{k}(4-1) = 5\overline{i} — \overline{j} + 3\overline{k} $$Полученный ответ можно записать в удобном виде:$$ \overline{a} \times \overline{b} = (5, -1, 3) $$Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
Ответ
$$ \overline{a} \times \overline{b} = (5, -1, 3) $$

Геометрический смысл

  • Модуль векторного произведения векторов $ \overline{a} $ и $ \overline{b} $ в геометрическом смысле равен площади параллелограмма, построенного на этих векторах: $$ S_{parall} = |\overline{a} \times \overline{b}| $$
  • Половина этого модуля это площадь треугольника: $$ S_\Delta = \frac{1}{2} |\overline{a} \times \overline{b} | $$
  • Если векторное произведение равно нулю $ \overline{a} \times \overline{b} = 0 $, то векторы коллинеарны.
Пример 2
Найти площадь треугольника по заданным векторам $$ \overline{a} = (2,1,3) $$ $$ \overline{b} = (-1,2,1) $$
Решение
Используя геометрический смысл, в частности вторую формулу находим половину модуля векторного произведения векторов.Находим определитель:$$ \begin{vmatrix} \overline{i}&\overline{j}&\overline{k}\\2&1&3\\-1&2&1 \end{vmatrix} = \overline{i}(1-6) — \overline{j}(2+3) + \overline{k}(4+1) = -5\overline{i} — 5\overline{j} + 5\overline{k} $$Вычисляем модуль полученного вектора как корень квадратный из суммы квадратов координат этого вектора:$$ |\overline{a} \times \overline{b}| = \sqrt{(-5)2 + (-5)2 + 52} = \sqrt{25 + 25 + 25} = \sqrt{75} $$По формуле нахождения площади треугольника имеем:$$ S_\Delta = \frac{1}{2} |\overline{a} \times \overline{b}| = \frac{1}{2} \sqrt{75} = 4.33 $$
Ответ
$$ S_\Delta = 4.33 $$

Нужно подробное решение своей задачи?

ЗАКАЗАТЬ РЕШЕНИЕ $ и $ \overline{b} $ является вектор $ \overline{c} $, который расположен перпендикулярно к плоскости, образуемой векторами $ \overline{a} $…»,»word_count»:581,»direction»:»ltr»,»total_pages»:1,»rendered_pages»:1}

Источник: https://xn--24-6kcaa2awqnc8dd.xn--p1ai/vektornoe-proizvedenie-vektorov.html

Вектор: определение, сложение, умножение, скалярное и векторное произведение

Как найти векторное произведение векторов

В статье узнаете что такое вектор, векторные компоненты, единичный вектор, как складывать вектора, умножать вектора на скаляр, скалярное, векторное и смешанное произведение двух векторов.

Сохранение физической величины с вектором обычно означает совершенно иную ситуацию, чем просто сохранение ее скалярной длины. Постоянное значение импульса p (скаляр) может означать совершенно иную ситуацию, чем постоянный вектор p.

Вектор должен иметь три необходимые характеристики: значение (длина), направление, начало и конец.

Любое изменение любого из этих признаков — длины, направления или начало с концом — означает, что создан другой вектор. Два вектора равны тогда и только тогда, когда они имеют равную длину, направление и начало с концом.

Векторные компоненты

Компонентами вектора являются его проекции на оси системы координат.

Также в трехмерном пространстве векторы A называются векторами, которые являются проекциями этого вектора A на оси системы координат.

Имея вектор A, мы погружаем его в систему координат x, y, z. Векторы, являющиеся проекциями вектора A на оси системы, называются векторными компонентами вектора A. Вектор A является векторной суммой составляющих векторов Ax, Ay и Az .

Единичный вектор

Единичный вектор, имеющий то же направление, что и вектор, на который он ссылается, важен, но его длина всегда равна 1.

Единичные векторы осей координат. Мы также присваиваем единичные векторы оси системы отсчета. а) относится к правовращающей системе и б) к левосторонней системе.

Сложение векторов

Сумма вектора обычно не совпадает с суммой скалярных величин:

Добавление двух или более векторов друг к другу сводится к добавлению их компонентов, то есть проекций на опорные оси. Результирующий вектор называется случайным вектором. Для двух векторов результирующий вектор является диагональю параллелограмма, построенного на этих векторах. Метод параллелограмма.

 В случае большего числа векторов результирующий вектор получается путем рисования одного из этих векторов, затем в конце первого вектора мы начинаем второй, в конце второго мы даем начало третьего и так далее.

Полученный вектор является вектором, начало которого находится в начале первого из добавленных векторов. и его конец в конце последнего.

 При изменении порядка сложения результирующий вектор (красный) не меняет длину, направление:

Это правило добавления векторов также действует в трехмерном пространстве:

Умножение вектора на скаляр

Самым простым умножением, выполняемым на векторах, является умножение вектора на скаляр (число). Такое умножение не меняет направление вектора, но, как правило, меняет его длину и может изменить его конец (когда скаляр является отрицательным числом). Когда вектор A умножается на α-скаляр, мы получаем новый вектор B:

Скалярное произведение и векторное произведение двух векторов являются очень важными направления в физике и геометрии. Существует также смешанное произведение трех векторов.

Скалярное произведение двух векторов

Формально скалярное произведение векторов представляет собой точку, и ее значение определяется зависимостью

Скалярное произведение описывает способ, которым оба вектора видят друг друга, то есть как долго тень (проекция) отбрасывает каждый из векторов в своего партнера, когда угол между ними равен φ

B cos φ — длина тени, которую вектор B выбрасывает в вектор A. Аналогично, A cos φ — длина тени, которую вектор A выбрасывает в вектор B.

Когда длина проекции (тени) одного из векторов равна нулю, тогда длина проекции второго вектора равна нулю, то есть A • B = 0. Это означает, что эти векторы не работают в одном и том же направлении вообще. Работа, которую мы выполняем при движении автомобиля, зависит не только от приложенной силы F, но и от угла, который создает направление силы и направление пути.

Так как единичные векторы оси системы отсчета х, у и z, которые обозначают векторы ехеY и еz, перпендикулярны друг к другу, то в виду того, что А • В = АВcosφ и что cos 0 = 1 и cos 90o = 0, мы получаем произведение значений этих единичных векторов:

Выполнение аналогичного умножения на векторы A и B

мы получили новое выражение для скалярного произведения двух векторов A и B

Значение скалярного произведения двух векторов A и B можно записать в виде двух эквивалентных выражений:

Сравнивая оба выражения, мы находим выражение для угла между векторами A и B:

Векторное произведение двух векторов

Многие важные величины в науке и технике определяются вектором, который является произведением двух других векторов. В таких случаях произведение этих векторов, называемое векторным произведением , приводит к третьему вектору.

В этом случае задача состоит в том, чтобы определить все три особенности вектора C, являющегося произведением векторного произведения векторов A и B:

  • длина
  • направление
  • начало и конец

Произведение векторов A и B , приводящее к третьему вектору C, отмечено диагональным крестом

Направление

Вектор С такой, что вектор перпендикулярен к плоскости, образованной векторами A и B, которая перпендикулярна как к вектору A и B.

Длина

вектор С равен значению параллелограмма, построенного на векторах А и В. Числовой C = ABsin φ.

Начало и конец

Вектор С определяет правое направление движения шнека во время нанесения первого вектора, а именно А или B.

Изменение порядка применения векторов означает изменение знака векторного произведения.

Таким образом, действительное свойство векторного произведения выглядит следующим образом A*B= -B*A

В отличие от скалярного произведения, векторное произведение некоммутативно.

Мы встретимся с векторным произведением на протяжении всего курса физики. Это также часто встречается в механике, а также в науке об электричестве и магнетизме.

В повседневной жизни векторное произведение находится в виде момента силы во вращательном движении. Мы воздействуем на вращательное движение тем эффективнее, чем больше применяем момент силы.

При откручивании гайки гаечным ключом речь идет не только о силе F, но и о способе ее применения (длина рычага R и угол, который создает рычаг с направлением силы).

Все эти зависимости элегантно включены в одно выражение в виде векторного произведения:

Хотя составляющие вектора C, который является произведением векторного произведения векторов A и B, уже включены в его длину и направление, но имея данные составляющих векторов A и B, мы можем использовать их для определения компонентов вектора C в форме матрицы:

Удобнее всего рассчитать этот определитель, расширив относительно первой строки.

Смешанное произведение трех векторов

Смешанное произведение трех векторов является скалярным значением, равным значению детерминанта

Геометрическая интерпретация: смешанное произведение численно равно объему V параллелепипеда, растянутому по векторам A, B и C:

Циклическая корректировка векторов в смешанном произведении не меняет значение этого произведения, то есть:

Источник: https://meanders.ru/vektor.shtml

Векторное произведение: определения, свойства, формулы, примеры и решения

Как найти векторное произведение векторов

Перед тем, как дать понятие векторного произведения, обратимся к вопросу о ориентации упорядоченной тройки векторов a→, b→, c→ в трехмерном пространстве.

Отложим для начала векторы a→, b→, c→ от одной точки. Ориентация тройки a→, b→, c→ бывает правой или левой, в зависимости от направления самого вектора c→. От того, в какую сторону осуществляется кратчайший поворот от вектора a→ к b→ с конца вектора c→, будет определен вид тройкиa→, b→, c→.

Если кратчайший поворот осуществляется против часовой стрелки, то тройка векторов a→, b→, c→ называется правой, если по часовой стрелке – левой.

Далее возьмем два не коллинеарных вектора a→ и b→. Отложим затем от точки A векторы AB→=a→ и AC→=b→. Построим вектор AD→=c→, который одновременно перпендикулярный одновременно и AB→ и AC→. Таким образом, при построении самого вектора AD→=c→ мы можем поступить двояко, задав ему либо одно направление, либо противоположное (смотрите иллюстрацию).

Упорядоченная тройка векторов a→, b→, c→ может быть, как мы выяснили правой или левой в зависимости от направления вектора.

Из вышесказанного можем ввести определение векторного произведения. Данное определение дается для двух векторов, определенных в прямоугольной системе координат трехмерного пространства.

Определение 1

Векторным произведением двух векторов a→ и b→ будем называть такой вектор заданный в прямоугольной системе координат трехмерного пространства такой, что:

  • если векторы a→ и b→ коллинеарны, он будет нулевым;
  • он будет перпендикулярен и вектору a→​​​​ и вектору b→ т.е. ∠a→c→=∠b→c→=π2 ;
  • его длина определяется по формуле: c→=a→·b→·sin∠a→,b→;
  • тройка векторов a→, b→, c→ имеет такую же ориентацию, что и заданная система координат.

Векторное произведение векторов a→ и b→ имеет следущее обозначение: a→×b→.

Координаты векторного произведения

Так как любой вектор имеет определенные координаты в системе координат, то можно ввести второе определение векторного произведения, которое позволит находить его координаты по заданным координатам векторов.

Определение 2

В прямоугольной системе координат трехмерного пространства векторным произведением двух векторов a→=(ax; ay; az) и b→=(bx; by; bz) называют вектор c→=a→×b→=(ay·bz-az·by)·i→+(az·bx-ax·bz)·j→+(ax·by-ay·bx)·k→, где i→, j→, k→ являются координатными векторами.

Векторное произведение можно представит как определитель квадратной матрицы третьего порядка, где первая строка есть векторы орты i→, j→, k→, вторая строка содержит координаты вектора a→, а третья – координаты вектора b→ в заданной прямоугольной системе координат, данный определитель матрицы выглядит так: c→=a→×b→=i→j→k→axayazbxbybz

Разложив данный определитель по элементам первой строки, получим равенство: c→=a→×b→=i→j→k→axayazbxbybz=ayazbybz·i→-axazbxbz·j→+axaybxby·k→==a→×b→=(ay·bz-az·by)·i→+(az·bx-ax·bz)·j→+(ax·by-ay·bx)·k→

Свойства векторного произведения

Известно, что векторное произведение в координатах представляется как определитель матрицы c→=a→×b→=i→j→k→axayazbxbybz, то на базе свойств определителя матрицы выводятся следующие свойства векторного произведения:

  1. антикоммутативность a→×b→=-b→×a→;
  2. дистрибутивность a(1)→+a(2)→×b=a(1)→×b→+a(2)→×b→ или a→×b(1)→+b(2)→=a→×b(1)→+a→×b(2)→;
  3. ассоциативность λ·a→×b→=λ·a→×b→ или a→×(λ·b→)=λ·a→×b→, где λ — произвольное действительное число.

Данные свойства имеют не сложные доказательства.

Для примера можем доказать свойство антикоммутативности векторного произведения.

Доказательство антикоммутативности

По определению a→×b→=i→j→k→axayazbxbybz и b→×a→=i→j→k→bxbybzaxayaz. А если две строчки матрицы переставить местами, то значение определителя матрицы должно меняется на противоположное,следовательно,a→×b→=i→j→k→axayazbxbybz =-i→j→k→bxbybzaxayaz=-b→×a→, что и доказывает антикоммутативность векторного произведения.

Векторное произведение – примеры и решения

В большинстве случаев встречаются три типа задач.

В задачах первого типа обычно заданы длины двух векторов и угол между ними, а нужно найти длину векторного произведения. В этом случае пользуются следующей формулойc→=a→·b→·sin∠a→,b→ .

Пример 1

Найдите длину векторного произведения векторов a→ и b→, если известноa→=3, b→=5, ∠a→,b→=π4.

Решение

С помощью определения длины векторного произведения векторов a→ и b→ решим данную задач: a→×b→=a→·b→·sin∠a→,b→=3·5·sinπ4=1522.

Ответ: 1522.

Задачи второго типа имеют связь с координатами векторов, в них векторное произведение, его длина и т.д. ищутся через известные координаты заданных векторов a→=(ax; ay; az) и b→=(bx; by; bz).

Для такого типа задач, можно решить массу вариантов заданий. Например, могут быть заданы не координаты векторов  a→ и b→, а их разложения по координатным векторам вида b→=bx·i→ +by·j→+bz·k→ и c→=a→×b→=(ay·bz-az·by)·i→+(az·bx-ax·bz)·j→+(ax·by-ay·bx)·k→, или векторы a→ и b→ могут быть заданы координатами точек их начала и конца.

Рассмотрим следующие примеры.

Пример 2

В прямоугольной системе координат заданы два вектора a→=(2; 1; -3), b→=(0; -1; 1). Найдите их векторное произведение.

Решение

По второму определению найдем векторное произведение двух векторов в заданных координатах:a→×b→=(ay·bz-az·by)·i→+(az·bx-ax·bz)·j→+(ax·by-ay·bx)·k→==(1·1-(-3)·(-1))·i→+((-3)·0-2·1)·j→+(2·(-1)-1·0)·k→==-2i→-2j→-2k→.

Если записать векторное произведение через определитель матрицы, то решение данного примера выглядит следующим образом: a→×b→=i→j→k→axayazbxbybz=i→j→k→21-30-11=-2i→-2j→-2k→.

Ответ: a→×b→=-2i→-2j→-2k→.

Пример 3

Найдите длину векторного произведения векторов i→-j→ и i→+j→+k→, где i→, j→, k→ — орты прямоугольной декартовой системы координат.

Решение

Для начала найдем координаты заданного векторного произведения i→-j→×i→+j→+k→ в данной прямоугольной системе координат.

Известно, что векторы i→-j→ и i→+j→+k→ имеют координаты (1; -1; 0)  и (1; 1; 1) соответственно. Найдем длину векторного произведения при помощи определителя матрицы, тогда имеем i→-j→×i→+j→+k→=i→j→k→1-10111=-i→-j→+2k→.

Следовательно, векторное произведение i→-j→×i→+j→+k→ имеет координаты (-1; -1; 2) в заданной системе координат.

Длину векторного произведения найдем по формуле (см. в разделе нахождение длины вектора): i→-j→×i→+j→+k→=-12+-12+22=6.

Ответ: i→-j→×i→+j→+k→=6..

Пример 4

В прямоугольной декартовой системе координат заданы координаты трех точек A(1,0,1), B(0,2,3), C(1,4,2) . Найдите какой-нибудь вектор, перпендикулярный AB→ и AC→ одновременно.

Решение

Векторы  AB→ и AC→ имеют следующие координаты (-1; 2; 2) и (0; 4; 1) соответственно. Найдя векторное произведение векторов AB→ и AC→, очевидно, что оно является перпендикулярным вектором по определению и к  AB→​​​​​ и к AC→, то есть, является решением нашей задачи. Найдем его AB→×AC→=i→j→k→-122041=-6i→+j→-4k→.

Ответ: -6i→+j→-4k→. — один из перпендикулярных векторов.

Задачи третьего типа ориентированы на использование свойств векторного произведения векторов. После применения которых, будем получать решение заданной задачи.

Пример 5

Векторы  a→ и b→ перпендикулярны и их длины равны соответственно 3 и 4. Найдите длину векторного произведения 3·a→-b→×a→-2·b→=3·a→×a→-2·b→+-b→×a→-2·b→==3·a→×a→+3·a→×-2·b→+-b→×a→+-b→×-2·b→.

Решение

По свойству дистрибутивности векторного произведения мы можем записать 3·a→-b→×a→-2·b→=3·a→×a→-2·b→+-b→×a→-2·b→==3·a→×a→+3·a→×-2·b→+-b→×a→+-b→×-2·b→

По свойству ассоциативности вынесем числовые коэффициенты за знак векторных произведений в последнем выражении: 3·a→×a→+3·a→×-2·b→+-b→×a→+-b→×-2·b→==3·a→×a→+3·(-2)·a→×b→+(-1)·b→×a→+(-1)·(-2)·b→×b→==3·a→×a→-6·a→×b→-b→×a→+2·b→×b→

Векторные произведения a→×a→ и b→×b→ равны 0, так как a→×a→=a→·a→·sin0=0 и b→×b→=b→·b→·sin0=0, тогда 3·a→×a→-6·a→×b→-b→×a→+2·b→×b→=-6·a→×b→-b→×a→..

Из антикоммутативности векторного произведения следует -6·a→×b→-b→×a→=-6·a→×b→-(-1)·a→×b→=-5·a→×b→..

Воспользовавшись свойствами векторного произведения, получаем равенство 3·a→-b→×a→-2·b→==-5·a→×b→.

По условию векторы  a→ и b→ перпендикулярны, то есть угол между ними равен π2. Теперь остается лишь подставить найденные значения в соответствующие формулы: 3·a→-b→×a→-2·b→=-5·a→×b→==5·a→×b→=5·a→·b→·sin(a→,b→)=5·3·4·sinπ2=60.

Ответ: 3·a→-b→×a→-2·b→=60.

Геометрический смысл векторного произведения

Длина векторного произведения векторов по орпеделению равна a→×b→=a→·b→·sin∠a→,b→.

Так как уже известно (из школьного курса), что площадь треугольника равна половине произведения длин двух его сторон умноженное на синус угла между данными сторонами.

Следовательно, длина векторного произведения равна площади параллелограмма — удвоенного треугольника, а именно произведению сторон в виде векторов  a→ и b→, отложенные от одной точки, на синус угла между ними sin∠a→,b→.

Это и есть геометрический смысл векторного произведения.

Физический смысл векторного произведения

В механике, одном из разделов физики, благодаря векторному произведению можно определить момент силы относительно точки пространства.

Определение 3

Под моментом силы F→, приложенной к точке B, относительно точки A будем понимать следующее векторное произведение AB→×F→.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/matematika/vektory/vectornoe_proizvedenie/

Booksm
Добавить комментарий