Измерение потенциала проводника

Содержание
  1. Разность потенциалов
  2. Сущность понятия потенциальной разницы
  3. Единица разности потенциалов
  4. Поток вектора магнитной индукции
  5. Теорема Гаусса для магнитного поля
  6. Выражение для потенциала поля точечного заряда
  7. Проводники в электростатическом поле
  8. Электроемкость уединенного проводника
  9. Падение потенциала вдоль проводника
  10. Опыт Вольта
  11. Измерение контактной разности потенциалов
  12. Разность потенциалов на практике
  13. Измерение потенциала проводника
  14. Как измерить потенциал проводника
  15. Метод электрического зонда
  16. Электрическое поле: определение, классификация, характеристики
  17. Определение
  18. Классификация
  19. Однородноеэлектрическое поле
  20. Неоднородное электрическое поле
  21. Характеристики
  22. Потенциал
  23. Напряжённость поля
  24. Напряжение
  25. Методы обнаружения
  26. Методы расчета электрического поля
  27. Использование
  28. Измерение с помощью электрометра
  29. Измерение с помощью метода электрического зонда
  30. Примеры решения задач

Разность потенциалов

Измерение потенциала проводника

Поскольку электрический ток является упорядоченным движением заряженных частиц, то для определения величины тока необходимо знать, как величину энергии частиц, так и силу стороннего воздействия на них.

Сущность понятия потенциальной разницы

Для изучения свойств заряженных частиц, помещенных в электростатическое поле, введено понятие потенциала. Оно означает отношение энергии заряда, помещенного в электростатическое поле, к его величине.

При переносе заряженной частицы в другую точку поля меняется его потенциальная энергия, а величина заряда остается неизменной. Для переноса требуется затратить некоторое количество энергии. Данная энергия по переносу единицы заряда получила название электрического напряжения. Соответственно, больший запас энергии будет ускорять перенос, то есть, чем больше напряжение, тем больше ток в цепи.

В данном случае разность потенциалов – это численное равенство напряжению между точками нахождения единичного заряда. Для общего случая здесь должна добавляться работа сторонних сил, которая называется электродвижущей силой (ЭДС). По своей сути, электричество – это работа стороннего источника (генератора) по поддержанию в электросхеме заданных уровней напряжения и тока.

Единица разности потенциалов

Что такое потенциал в электричестве

В честь ученого (Алессандро Вольта), впервые доказавшего существование разницы потенциалов, единица измерения названа Вольт. В международной системе единиц напряжение обозначается символами:

  • В – в русскоязычной литературе;
  • V – в англоязычной литературе.

Кроме этого, существуют кратные обозначения:

  • мВ – милливольт (0.001 В);
  • кВ – киловольт (1000 В);
  • МВ – мегавольт (1000 кВ).

Поток вектора магнитной индукции

Электростатическое поле характеризуется напряженностью, которая вместе с вектором электромагнитной индукции составляет электромагнитное поле.

Если заряженная частица движется в электромагнитном поле, то полную силу, которая воздействует на частицу, определяют по закону Лоренца:

F=q∙E+q∙vхB,

где:

  • q – величина заряда;
  • v – скорость движения;
  • E – величина электрического поля;
  • В – вектор магнитной индукции.

Обратите внимание! В указанной формуле приведены векторные величины. Крестом обозначено векторное произведение.

Силу F воздействия на частицу принято называть силой Лоренца.

Поток вектора магнитной индукции

Данная формула является наиболее общей и может использоваться для вычисления при условии точечного заряда (в том числе единичного).

Теорема Гаусса для магнитного поля

Электрическое поле — что это такое, понятие в физике

Теорема Гаусса является одной из самых основных в электродинамике законов. Существуют теоремы Гаусса для электрического и магнитного полей, которые входят в состав уравнений Максвелла.

При помощи данного закона устанавливается связь между напряженностью электрического поля и заряда в случае произвольной поверхности. Теорема (закон) Гаусса гласит, что в произвольной замкнутой поверхности поток вектора электрического поля пропорционален заряду, заключенному внутри поверхности.

Для магнитного поля теорема Гаусса говорит о том, что поток вектора магнитной индукции через произвольную замкнутую поверхность равен нулю.

Выражение для потенциала поля точечного заряда

Поскольку потенциал равен интегралу от напряженности поля, то можно подставить под знак интеграла выражение для напряженности поля единичного заряда. После интегрирования и преобразования выражение для поля точечного заряда принимает вид:

ϕ=q/(4∙π∙ε0∙ε∙r),

где:

  • ε0 – электрическая постоянная;
  • r – расстояние.

Приведенное выражение свидетельствует, что величина энергии растет пропорционально степени заряженности и падает пропорционально расстоянию.

Проводники в электростатическом поле

Размещение проводника в электростатическом поле приводит к тому, что поле начнет действовать на носители заряда внутри проводящего предмета. Носители начинают перемещаться до тех пор, пока электростатическое поле вне поверхности ни обратится в нуль.

Поскольку поле внутри вещества отсутствует, то во всех точках проводящего материала энергия будет постоянной, а поверхность эквипотенциальной. Векторы напряженности поля направлены под прямым углом в любой точке поверхности проводника.

Проводник в электростатическом поле

Под действием поля заряды внутри проводника отсутствуют, поскольку они сосредоточены исключительно на поверхности. Этот факт используется при экранировке – защите тел от влияния внешних электромагнитных и электростатических полей. Для экранирования может использоваться не только сплошной проводящий материал, но и сетка, так называемая «клетка Фарадея».

Также свойство перемещения заряженных частиц (электронов) используется в электростатических генераторах для получения напряжения в несколько миллионов вольт.

Электроемкость уединенного проводника

Для связи величин заряда и напряжения введено понятие электрической емкости. Для уединенного проводника (такого, на который отсутствует влияние других заряженных тел) значение емкости – величина постоянная и равная отношению количества заряда к потенциалу. Другими словами, емкость показывает, какой заряд нужно сообщить проводнику, чтобы его потенциальная энергия увеличилась на единицу.

Электроемкость не зависит от степени заряженности. Роль играют только:

  • форма;
  • геометрические размеры;
  • диэлектрические свойства среды.

Так же, как и емкость электрического конденсатора, электроемкость проводника будет обозначаться в фарадах.

Обратите внимание! На практике электроемкость проводника составляет очень малую величину. Для увеличения значения, особенно при производстве конденсаторов, как элементов с нормированным значением емкости, разработаны особые технологии.

Падение потенциала вдоль проводника

На концах проводника, помещенного в электрическое поле, начинает наблюдаться разность потенциалов. Вследствие этого электроны начинают перемещаться в сторону увеличения разности. В проводнике возникает электрический ток.

Свободные электроны продвигаются вдоль проводника до тех пор, пока разница ни будет равна нулю. На практике для поддержания заданной величины тока цепи запитываются от источников напряжения или тока.

Разница заключается в следующем:

  • Источник тока поддерживает в цепи постоянный ток вне зависимости от сопротивления нагрузки;
  • Источник напряжения поддерживает на своих зажимах строго постоянную ЭДС, независимо от величины потребляемого тока.

Разница потенциалов (падение напряжения) пропорциональна расстоянию от концов проводника, то есть обладает линейной зависимостью.

Опыт Вольта

Первым доказал существование разности потенциалов Алессандро Вольта. Для опытов были взяты два диска, выполненных из меди и цинка и насаженных на стержень электроскопа. При соприкосновении меди и цинка листочки электроскопа расходятся, свидетельствуя о наличии электрического заряда.

На основании своих опытов ученый изготовил первый источник электрического напряжения – вольтов столб.

Измерение контактной разности потенциалов

Основная проблема заключатся в том, что контактная разность потенциалов не может быть измерена напрямую, вольтметром, хотя значение ЭДС в цепи с соединением двух различных проводников может составлять от долей до единиц вольт.

Контактная потенциальная разница существенно влияет на вольтамперную характеристику измеряемой цепи. Наглядным примером может служить полупроводниковый диод, где подобное явление возникает на границе соприкосновения полупроводников с разным типом проводимости.

Разность потенциалов на практике

С общепринятой точки зрения, разность потенциалов – это напряжение между двумя выбранными точками цепи. В то же время напряжение между каждой из этих точек и третьей точкой будет отличаться в полном соответствии с определением.

Наглядный пример:

  • Точка А в электрической схеме – напряжение 10 В относительно провода заземления;
  • В точке В напряжение составляет 25 В относительно того же провода.

Необходимо найти напряжение между точками А и В.

В данном случае искомая разность составляет:

UAB= ϕА-ϕВ=10-25=15 В.

Рассматриваемые понятия важны для минимального объема знаний в области электротехники и электроники, поскольку на них основываются все расчеты и практические решения. Без этих азов невозможно более углубленное изучение электрических дисциплин.

Источник: https://amperof.ru/teoriya/raznost-potencialov.html

Измерение потенциала проводника

Измерение потенциала проводника

Как уже неоднократно отмечалось, напряженность поля внутри проводника равна нулю. Из этого следует, что проводник эквипотенциален по всему объему, то есть во всех точках проводника потенциалы одинаковы, значит, разность потенциалов двух любых точек проводника равна:

Значение потенциала, равное во всех точках проводника называют потенциалом проводника.

Допустим, что мы имеем изолированный, заряженный проводник. Заряд этого проводника создаёт электрическое поле в веществе вокруг проводника. Примем нормировку потенциала на ноль в бесконечности. В таком случае потенциал проводника выразим как:

где путь интегрирования начинается в любой точке проводника и заканчивается в бесконечности.

Как измерить потенциал проводника

Прибором для измерения разности потенциалов между двумя проводниками может служить электроскоп, листочки или стрелка которого окружены металлической оболочкой, при этом его называют электрометром. При этом один проводник соединяют с шариком электрометра, другой с оболочкой (рис. 1).

Стрелка электрометра примет потенциал тела (1), а оболочка — потенциал тела (2). Возникнет электрическое поле, силовые линии которого идут от оболочки к стрелке или в обратном направлении. При этом угол отклонения стрелки определен напряженностью и конфигурацией возникшего поля.

При этом поле внутри замкнутой оболочки из металла ни как не зависит от внешнего поля. Оно определяется разностью потенциалов между оболочкой и стрелкой.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Значит, угол отклонения стрелки есть мера разности потенциалов тел (1) и (2).

Подобный прибор можно градуировать в вольтах. Очень часто в качестве второго тела используют Землю, то есть оболочку электрометра заземляют. В таком случае электрометр покажет потенциал тела (1) относительно Земли.

Рис. 1

Не имеет принципиального значения, какое из тел заземлять, оболочку или шарик. От этого зависит только направление силовых линий. Угол отклонения стрелки в обоих случаях будет одним. Понятно, что электрометр может служить измерительным прибором для потенциала тела, только если его стрелка защищена не полностью от внешних полей.

Но при этом связь стрелки с внешними телами должна быть слабой. Для этого отверстие в оболочке металлического экрана (шарика) и наружная часть стержня, которая соединяет шарик со стрелкой, должны быть небольшими. В противном случае, на этих частях электрометра могут возникать существенные заряды, которые индуцируются посторонними внешними телами.

Они вносили бы искажения при переходе на стрелку, и разность потенциалов измерялась бы неверно. Провода, которые соединяют тела (1) и (2) по такой же причине должны быть тонкими. Используя электрометр легко убедиться, что поверхность проводника всегда является эквипотенциальной.

Если соединять электрометр с разными точками заряженного проводника, то отклонение стрелки его изменяться не будет.

Метод электрического зонда

Для измерения разности потенциалов в жидком или газообразном диэлектрике используют метод электрического зонда. Зонд состоит из небольшого металлического тельца (например, шарик или диск), которое соединено проволочкой с шариком электрометра. Оболочка электрометра заземлена.

Зонд помещают в точку диэлектрика, потенциал которой измеряют. При этом электрометр покажет разность потенциалов между стрелкой и оболочкой (тоже самое: между зондом и Землей). При этом необходимо заметить, что зонд существенно изменяет потенциал точки, в которую он помещается.

Причиной этому являются индукционные заряды, которые появляются на зонде и шарике электрометра. Поэтому для того, чтобы была возможность истинного измерения потенциала надо, чтобы при внесении зонда в исследуемую точку зонд и соединенный с ним шарик электроскопа приняли потенциал, который был в нашей точке до внесения зонда.

Это достигается если убрать индукционные заряды с зонда. Так, например, в капельном зонде телом служит маленькое ведерко, которое наполняется проводящей жидкостью. В дне ведерка есть очень маленькое отверстие. Капли жидкости, стекающие из этого отверстия, уносят индукционный заряд, который возникает на зонде.

Заряды противоположного знака переходят на стрелку электрометра. Угол отклонения стрелки изменяется. В стационарном состоянии, когда зонд не заряжен, потенциал зонда равен потенциалу окружающего пространства. Так как зонд соединен проводником с шариком электрометра, то потенциал шарика измерительного прибора будет таким же.

В результате электрометр покажет потенциал, который необходимо измерить. Индукционные заряды удаляют и другими методами, например, используют «пламенный зонд». В этом случае зондом является кончик металлической проволоки, который выступает из диэлектрической трубки, которая играет роль газовой горелки.

Из-за высокой температуры пламени воздух вокруг нее слегка ионизируется и становится проводящим. Ионы уносят индукционные заряды с зонда с потоком газа. Похожая идея реализуется и в радиоактивном зонде.

Пример 1

Задание: Опыты показали, что земной шар заряжен отрицательно. В среднем напряженность поля около самой поверхности Земли составляет 130$\frac{В}{м}$. Разность потенциалов уровней у ног человека и у головы составляет примерно 200 В. Почему при таких условиях человек не поражается электрическим током?

Решение:

Человеческое тело является хорошим проводником. Как и любой другой проводник, тело человека сильно искажает электрическое поле. При помещении тела человека происходит перераспределение зарядов на поверхности его тела, но это перемещение идет короткий промежуток времени и оно очень слабо.

Силовые линии поля подходят к поверхности тела перпендикулярно, а эквипотенциальные поверхности огибают его, так же как металлический предмет. Весь объем тела человека эквипотенциален, то есть все точки тела имеют равные потенциалы. Напряженность поля зависит от разности потенциалов поля, если разность потенциалов равна нулю, значит и напряженность поля нуль.

Поэтому человек не чувствует разности потенциалов электрического поля Земли.

Пример 2

Задание: Если коснуться электроскопа пальцем, то он разрядится. Будет ли разряжаться электроскоп, если недалеко от него поместить изолированное от Земли заряженное тело?

Решение:

Если к электроскопу поднести заряженное тело, то на стержне прибора возникнут индуцированные заряды. Причем на внешнем конце заряды будут иметь противоположный знак по отношению к зарядам тела, на внутреннем конце такой же знак, что и заряд тела. Следовательно, электроскоп не разрядится на электрометре останется индуцированный заряд.

Пример 3

Задание: Измерения электрическим зондом показывают, что изменение потенциала электрического поля Земли изменяется в среднем на 100 В на каждый метр подъема от поверхности. Вычислите заряд Земли, если считать, что поле создается этим зарядом. Радиус Земли принять равным R=6400 км.

Решение:

Изменение модуля напряженности поля можно связать c изменением потенциала Земли в нашей задаче с помощью формулы:

\[\left|E\right|=\frac{\triangle \varphi }{\triangle x}(3.1)\]

судя по размерности в нашей задаче указан именно $\left|E\right|$.

По теореме Остроградского — Гаусса запишем, что:

\[ES=\frac{q}{\varepsilon {\varepsilon }_0}\left(3.2\right),\]

где $S=4\pi R2$, где поверхность, через которую рассмотрен поток вектора напряженности, совпала со сферой радиуса Земли. Выразим искомый заряд:

\[q=ES\varepsilon {\varepsilon }_0\ \left(3.3\right).\]

Будем считать, что $\varepsilon =1$, подставим в (3.3) выражение (1.1), учтем, что$\ S=4\pi R2$ получим:

\[q=\frac{\triangle \varphi }{\triangle x}4\pi R2\varepsilon {\varepsilon }_0.\]

Переведем радиус Земли в СИ, получим: $R=6,4\cdot {10}6м.$ Проведем вычисления заряда Земли:

\[q=\frac{100\cdot 4\cdot 3,14\cdot 8,85\cdot {10}{-12}\cdot {\left(6,4\cdot {10}6\right)}2}{1}\approx 4,55\cdot {10}5\ \left(Кл\right).\]

Ответ: Заряд Земли равен $4,55\cdot {10}5Кл\ $.

Источник: https://spravochnick.ru/fizika/elektrostatika/izmerenie_potenciala_provodnika/

Электрическое поле: определение, классификация, характеристики

Измерение потенциала проводника

Нас окружает материальный мир. Материю мы воспринимаем с помощью зрения и других органов чувств. Отдельным видом материи является электрическое поле, которое можно выявить только через его влияние на заряженные тела или с помощью приборов. Оно порождает магнитные поля и взаимодействует с ними. Эти взаимодействия нашли широкое практическое применение.

Определение

Электрическое поле неразрывно связано с магнитным полем, и возникает в результате его изменения. Эти два вида материи являются компонентами электромагнитных полей, заполняющих пространство вокруг заряженных частиц или заряженных тел.

Таким образом, данный термин означает особый вид материи, обладающий собственной энергией, являющийся составным компонентом векторного электромагнитного поля. У электрического поля нет границ, однако его силовое воздействие стремится к нулю, при удалении от источника – заряженного тела или точечных зарядов [1].

Важным свойством полевой формы материи является способность электрического поля поддерживать упорядоченное перемещение носителей зарядов.

Рис. 1. Определение понятия «электрическое поле»

Энергия электрического поля подчиняется действию закона сохранения. Её можно преобразовать в другие виды или направить на выполнение работы.

Силовой характеристикой полей выступает их напряжённость – векторная величина, численное значение которой определяется как отношение силы, действующей на пробный положительный заряд, к величине этого заряда.

Характерные физические свойства:

  • реагирует на присутствие заряженных частиц;
  • взаимодействует с магнитными полями;
  • является движущей силой по перемещению зарядов – как положительных ионов, таки отрицательных зарядов в металлических проводниках;
  • поддаётся определению только по результатам наблюдения за проявлением действия.

Оно всегда окружает неподвижные статичные (не меняющиеся со временем) заряды, поэтому получило название – электростатическое. Опыты подтверждают, что в  электростатическом поле действуют такие же силы, как и в электрическом.

Электростатическое взаимодействие поля на заряженные тела можно наблюдать при поднесении наэлектризованной эбонитовой палочки к мелким предметам. В зависимости от полярности наэлектризованных частиц, они будут либо притягиваться, либо отталкиваться от палочки.

Сильные электростатические поля образуются вблизи мощных электрических разрядов. На поверхности проводника, оказавшегося в зоне действия разряда, происходит перераспределение зарядов.

Вследствие распределения зарядов проводник становится заряженным, что является признаком влияния электрического поля.

Классификация

Электрические поля бывают двух видов: однородные и неоднородные.

Однородноеэлектрическое поле

Состояние поля определяется пространственным расположением линий напряжённости. Если векторы напряжённости идентичны по модулю и они при этом сонаправлены во всех точках пространства, то электрическое поле – однородно. В нём линии напряжённости расположены параллельно.

В качестве примера является электрическое поле, образованное разноимёнными зарядами на участке плоских металлических пластин (см. рис. 2).

Рис. 2. Пример однородности

Неоднородное электрическое поле

Чаще встречаются поля, напряжённости которых в разных точках отличаются. Линии напряжённости у них имеют сложную конфигурацию.

Простейшим примером неоднородности является электрический диполь, то есть система из двух разноимённых зарядов, влияющих друг на друга (см. рис. 3).

Несмотря на то, что векторы напряжённости электрического диполя образуют красивые линии, но поскольку они не равны, то такое поле неоднородно. Более сложную конфигурацию имеют вихревые поля (рис 4).  Их неоднородность очевидна.

Рис. 3. Электрический диполь Рис. 4. Вихревые поля

Характеристики

Основными характеристиками являются:

  • потенциал;
  • напряжённость;
  • напряжение.

Потенциал

Термин означает отношение потенциальной энергии W, которой обладает пробный заряд q′ в данной точке к его величине. Выражение φ=W/q′. называется потенциалом электрического поля в этой точке.

Другими словами: количество накопленной энергии, которая потенциально может быть потрачена на выполнение работы, направленной на перемещение единичного заряда в бесконечность, или в другую точку с условно нулевой энергией,  называется потенциалом рассматриваемого электрического поля в данной точке.

Энергия поля учитывается по отношению к данной точке. Её ещё называют потенциалом в данной точке. Общий потенциал системы равен сумме потенциалов отдельных зарядов. Это одна из важнейших характеристик поля. Потенциал можно сравнить с энергией сжатой пружины, которая при высвобождении способна выполнить определённую работу.

Единица измерения потенциала – 1 вольт. При бесконечном удалении точки от наэлектризованного тела, потенциал в этой точке уменьшается до 0: φ∞=0.

Напряжённость поля

Достоверно известно, что электрическое поле отдельно взятого заряда q действует с определённой силой F на точечный пробный заряд, независимо от того, на каком расстоянии он находится. Сила, действующая на изолированный положительный пробный заряд, называется напряжённостью и обозначается символом E.

Напряжённость – векторная величина. Значение модуля вектора напряжённости: E=F/q′.

Линиями напряжённости электрического поля (известные как силовые линии), называются касательные, которые в точках касания совпадают с ориентацией векторов напряжённости. Плотность силовых линий определяет величину напряжённости.

Рис. 5. Электрическое поле положительного и отрицательного вектора напряжённости

Напряженность вокруг точечного заряда Q на расстоянии r от него, определяется по закону Кулона: E = 14πε0⋅Qr2. Такие поля называют кулоновскими.

Векторы напряженности положительного точечного заряда направлены от него, а отрицательного – до центра (к заряду). Направления векторов кулоновского поля видно на рис. 6.

Рис. 6. Направление линий напряжённости положительных и отрицательных зарядов

Для кулоновских полей справедлив принцип суперпозиции. Суть принципа в следующем:вектор напряжённости нескольких зарядов может быть представлен в виде геометрической суммы напряжённостей, создаваемых каждым отдельно взятым зарядом, входящих в эту систему.

Для общего случая распределения зарядов имеем:

Линии напряжённости схематически изображены на рисунке 7. На картинке видно линии, характерные для полей:

  • электростатического;
  • дипольного;
  • системы и одноимённых зарядов;
  • однородного поля.

Рис. 7. Линии напряжённости различных полей

Напряжение

Поскольку силы электрического поля способны выполнять работу по перемещению носителей элементарных зарядов, то наличие поля является условием для существования электрического тока. Электроны и другие элементарные заряды всегда двигаются от точки, обладающей более высоким потенциалом, к точке с низшим потенциалом. При этом часть энергии расходуется на выполнение работы по перемещению.

Для поддержания постоянного тока (упорядоченного движения носителей элементарных зарядов) необходимо на концах проводника поддерживать разницу потенциалов, которую ещё называют напряжением. Чем больше эта разница, тем активнее выполняется работа, тем мощнее ток на этом участке. Функции по поддержанию разницы потенциалов возложены на источники тока.

Методы обнаружения

Органы чувств человека не воспринимают электрических полей. Поэтому мы не можем их увидеть, попробовать на вкус или определить по запаху. Единственное, что может ощутить человек – это выпрямление волос вдоль линий напряжённости. Наличие слабых воздействий мы просто не замечаем.

Обнаружить их можно через воздействие на мелкие кусочки бумаги, бузиновые шарики и т.п. Электрическое поле воздействует на электроскоп – его лепестки реагируют на такие воздействия.

Очень простой и эффективный метод обнаружения с помощью стрелки компаса. Она всегда располагается вдоль линий напряжённости.

Существуют очень чувствительные электронные приборы, с лёгкостью определяющие наличие электростатических полей.

Методы расчета электрического поля

Для расчётов параметров используются различные аналитические или численные методы:

  • метод сеток или конечных разностей;
  • метод эквивалентных зарядов;
  • вариационные методы;
  • расчёты с использованием интегральных уравнений и другие.

Выбор конкретного метода зависит от сложности задачи, но в основном используются численные методы, приведённые в списке.

Использование

Изучение свойств электрического поля открыло перед человечеством огромные возможности. Способность поля перемещать электроны в проводнике позволила создавать источники тока.

На свойствах электрических полей создано различное оборудование, применяемое в медицине, химической промышленности, в электротехнике. Разрабатываются приборы, применяемые в сфере беспроводной передачи энергии к потребителю. Примером могут послужить устройства беспроводной зарядки гаджетов. Это пока только первые шаги на пути к передачи электричества на большие расстояния.

Сегодня, благодаря знаниям о свойствах полевой формы материи, разработаны уникальные фильтры для очистки воды. Этот способ оказался дешевле, чем использование традиционных сменных картриджей.

К сожалению, иногда приходится нейтрализовать силы полей. Обладая способностью электризации предметов, оказавшихся в зоне действия, электрические поля создают серьёзные препятствия для нормальной работы радиоэлектронной аппаратуры. Накопленное статическое электричество часто является причиной выхода из строя интегральных микросхем и полевых транзисторов.

Источник: https://www.asutpp.ru/elektricheskoe-pole.html

Измерение с помощью электрометра

Определение 2

Электроскоп — прибор для измерения разности потенциалов между двумя проводниками.

Если его стрелка или листочки заключены в металлическую оболочку, то его называют электрометром. Для измерения нам надо соединить один проводник с его оболочкой, а второй – с шариком, после чего стрелка прибора примет потенциал измеряемого тела.

При этом образуется электрическое поле с силовыми линиями, направленными от стрелки к оболочке или наоборот. От напряженности и конфигурации этого поля будет зависеть величина отклонения стрелки.

Важно отметить, что поле внутри металлической оболочки не будет зависеть от внешнего поля, а будет определяться только разностью потенциалов между стрелкой и оболочкой.

Определение 3

Мерой разности потенциалов двух измеряемых тел является угол отклонения стрелки электрометра.

Градуировка на таком приборе может быть и в вольтах. Зачастую при измерении вторым телом выступает земля, то есть выполняется заземление оболочки электрометра. В таком случае его показания будут означать потенциал тела относительно Земли.

Рисунок 1

Можно заземлять как оболочку, так и шарик, это не имеет значения. Это определит только направление, в котором будут идти силовые линии, а угол отклонения стрелки окажется одинаковым.

Очевидно, что стрелка должна иметь слабую связь с внешними полями, чтобы точность измерения электрометром была высокой. Однако слишком сильная связь искажает показания.

Чтобы создать нужный уровень защиты, в оболочке экрана или шарика, а также в наружной части стержня, соединяющего стрелку с шариком, оставляют небольшое отверстие.

Если контакт с внешними полями будет слишком интенсивным, то на этих частях прибора возникнут посторонние заряды, индуцированные внешними полями, которые будут вносить искажения при переходе на стрелку. По той же самой причине провода, соединяющие измеряемые тела, не должны быть толстыми.

С помощью электрометра мы можем убедиться в эквипотенциальности поверхности проводника. Соединив прибор с разными точками заряженного проводника, мы увидим, что отклонение стрелки останется прежним.

Измерение с помощью метода электрического зонда

Определение 4

Если нам нужно измерить разность потенциалов в жидких или газообразных диэлектриках, то применяется метод электрического зонда. Это небольшой металлический прибор, состоящий из шарика или диска, соединенного проволокой с шариком электрометра. При этом прибор должен иметь заземленную оболочку.

Зонд необходимо поместить в нужную точку диэлектрика, после чего он покажет разность потенциалов между оболочкой и стрелкой (или между зондом и Землей).

Нужно учитывать, что помещение зонда в диэлектрик сильно изменяет потенциал измеряемой точки. Это происходит из-за индукционных зарядов на шарике прибора и самом зонде.

Чтобы получить достоверные данные, нужно, чтобы при внесении зонда прибор и шарик электроскопа приняли исходный потенциал измеряемой точки.

Убрать индукционные заряды можно разными способами.

Пример 1

Например, если зонд капельный, то нам потребуется небольшой сосуд с проводящей жидкостью, на дне которого есть маленькое отверстие. Через него капли проводника унесут индукционный заряд, и все заряды с противоположным знаком перейдут на стрелку электрометра. Это должно изменить угол отклонения стрелки.

Если зонд не заряжен, то его потенциал такой же, как у окружающего его пространства. Поскольку он соединяется с шариком электрометра, то его потенциал будет равен ему. В итоге мы получим нужное значение потенциала без искажений.

Определение 5

Также индукционные заряды удаляют при помощи так называемого пламенного зонда. В таком случае в качестве зонда выступает конец металлической проволоки, соединенный с диэлектрической трубкой, используемой в качестве газовой горелки.

Высокая температура слегка ионизирует воздух вокруг и делает его проводящим. В итоге индукционные заряды уносятся ионами вместе с потоком газа. Примерно та же идея лежит в основе радиоактивного зонда.

Примеры решения задач

Пример 2

Условие: экспериментально подтверждена отрицательная заряженность Земли. Около земной поверхности имеется напряженность, среднее значение которой составляет примерно 130 В на кв.м. У человека имеется разность потенциалов между головой и ногами, равная примерно 200 В. Поясните, почему при этом не происходит поражения электрическим током.

Решение

Тело человека – очень хороший проводник, значит, оно вносит сильные искажения в электрическое поле вокруг себя. На поверхности человеческого тела заряды перераспределяются, но это продолжается весьма недолгое время, и интенсивность процесса невысока.

Положение силовых линий поля по отношению к телу является перпендикулярным, а эквипотенциальные поверхности огибают его точно так же, как металлический предмет. Все тело человека является эквипотенциальным, т.е. в разных его точках потенциалы одинаковы.

Напряженность поля зависит от разности потенциалов поля, если разность потенциалов равна нулю, значит и напряженность поля будет нулевой.

Ответ: Именно поэтому человек не чувствует разности потенциалов электрического поля Земли.

Пример 3

Условие: прикосновение к электроскопу пальцем вызывает его разрядку. Будет ли прибор разряжаться в том случае, если рядом с ним будет находиться заряженное тело, изолированное от Земли?

Решение

При поднесении заряженного тела к электроскопу мы увидим, что на стержне прибора появятся индуцированные заряды. Со стороны внешнего конца они будут иметь знак, противоположный зарядам на внутреннем конце.

Ответ: электроскоп не разрядится.

Пример 4

Условие: измерение с помощью электрического зонда показало, что потенциал электрического поля Земли меняется по мере подъема вверх примерно на 100 В/м. Подсчитайте, чему будет равен заряд Земли, если считать, что поле создается именно им. Радиус Земли считать равным 6400 км.

Решение

То, что модуль напряженности меняется, может быть связано с изменением потенциала Земли. Нам потребуется формула:

E=∆φ∆x.

Учитывая размерность, сделаем вывод, что в задаче нужно использовать именно E.

Зная теорему Остроградского-Гаусса, можем записать:

ES=qεε0.

Здесь S=4πR2, где поверхность, через которую рассмотрен поток вектора напряженности. Она совпадает со сферой радиуса Земли.

Искомый заряд выражается так:

q=ESεε0.

Примем ε=1. Подставим это в формулу, учтем, что S=4πR2, и получим:

q=∆φ∆x4πR2εε0.

Переведем радиус Земли в СИ, получим: R=6,4·106 м. Вычислим заряд Земли:

q=100·4·3,14·8,85·10-12·6,4·10621≈4,55·105 Кл

Ответ: Земля имеет заряд, равный 4,55·105 Кл.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/fizika/elektricheskoe-pole/izmerenie-potentsiala-provodnika/

Booksm
Добавить комментарий