Исследования Ландау по квантовой механике

Ландау работает.

I Всесоюзная конференция по теоретической физике. Харьков, 1929.

Участники I Всесоюзной конференции по теоретической физике. Харьков, 1929. Во втором ряду (в белых рубашках) стоят: Л. Д. Ландау, Г. А. Гамов, М. А. Корец. В первом ряду, в центре: Д. Д. Иваненко и Я. И. Френкель.

Л. Ландау, А. Лейпунский, Ю. Рябинин, О. Трапезникова, П. Капица, Л. Верещагин, Л. Шубников, Б. Финкельштейн, Б. Руэман в УФТИ. Харьков, 1933.

Международная конференция по теоретической физике, проходившая в УФТИ весной 1934 года. Справа налево: И. Тамм, В. Фок, Я. Френкель (6-й), Л. Ландау (8-й), Н. Бор (10-й), Ю. Румер (12-й), Л. Розенфельд, Л. Тисса, Д. Иваненко.

Ленинград, Дом ученых, 1934. Слева направо: в первом ряду А.П. Карпинский, через одного А.Ф. Иоффе, Н. Бор. В.И. Вернадский, жена консула Дании, жена Н. Бора, дочь А.П. Карпинского, во втором ряду третий Д.Д. Иваненко, пятый Д.В. Скобельцин, Я.Г. Дорфман, Н.Н. Семенов, Я.И. Френкель, Л.Д. Ландау, консул Дании.

Московские физики в Иванове в день полного солнечного затмения 9 июля 1945 г. В центре ? П. Л. Капица и Л. Д. Ландау.

Гелл-Манн и Ландау. Киев, 1959.

М. Гелл-Манн, Л. Ландау и Р. Маршак. Москва, 1957.

Участники конференции по физике высоких энергий. Киев, 1959.

Прогулка участников конференции по Днепру. Киев, 1959.

И.Е. Тамм, П.Л. Капица, Н.Н. Боголюбов, Л.Д. Ландау, П.А.М. Дирак и В.А. Фок. 1957.

Соавторы Е.М. Лифшиц и Л.Д. Ландау.

Вечер в Институте физических проблем, посвящённый шестидесятилетию Л. Д. Ландау. 5 марта 1968 г.

Вручение Нобелевской премии. Москва, больница Академии Наук, 1962.

Президент Академии наук М.В. Келдыш поздравляет Л.Д. Ландау с присуждением ему Нобелевской премии.

Научные труды Ландау

Лев Давидович Ландау был величайшим универсалом, внесшим фундаментальный вклад в самые различные области: квантовую механику, физику твердого тела, теорию магнетизма, теорию фазовых переходов, ядерную физику и физику элементарных частиц, квантовую электродинамику, физику низких температур, теорию атомных столкновений, теорию химических реакций, гидродинамику, кристаллографиию и другие дисциплины.

Еще обучаясь в Ленинградском университете, Ландау с восторгом встретил появление статей В. Гейзенберга и Э. Шрёдингера, в которых содержались основы квантовой механики.

И почти сразу же 18-летний Ландау вносит фундаментальный вклад в квантовую теорию — вводит понятие матрицы плотности в качестве метода для полного квантово-механического описания систем, являющихся частью более крупной системы. Это понятие стало основным в квантовой статистике.

К 1931 году относится фундаментальная работа, выполненная имеете с Р. Пайерлсом, в которой анализируется принцип неопределенности в релятивистской области и устанавливаются новые ограничения на измерения различных динамических переменных.

То была эпоха рождения и бурного развития новой физической теории — квантовой механики, так что творческий путь Ландау был тесным образом связан со всеми этапами развития этой важнейшей физической теории. Масштаб личностей того времени и их работ поражает.

Например, другом юности Ландау был Г.А. Гамов, впоследствии знаменитый физик.

Гамов создал теорию альфа-распада ядер, предсказал существование реликтового излучения, оставшегося с момента Большого взрыва — начала существования Вселенной, он был одним из первых, кто разъяснил наследственный код, связанный с генной структурой.

Универсализм Ландау поистине уникален. В теории сверхпроводимости важнейшее значение имеет уравнение Ландау-Гинзбурга. Он построил теорию промежуточного состояния сверхпроводников. Общеизвестен диамагнетизм Ландау. Он предложил общий метод исследования особенностей фейнмановских диаграмм.

В физике элементарных частиц ему принадлежит теория двухкомпонентного нейтрино и введение понятия комбинированной четности. Одной из самых замечательных работ Ландау стала созданная им теория сверхтекучести, объяснившая открытое П.Л. Капицей явление сверхтекучести жидкого гелия.

Ландау создал теорию фазовых переходов второго рода, построил теорию ферми-жидкости.

Ряд работ Льва Давидовича был посвящен астрофизике. В 1932 г. он установил верхний предел на массу белых карликов — звезд, состоящих из вырожденного релятивистского ферми-газа электронов.

Он заметил, что при массах, больших этого предела должно было бы происходить катастрофическое сжатие звезды (явление, которое впоследствии послужило основой для идеи существования черных дыр).

Для того чтобы избежать таких «абсурдных» (по его словам) тенденций, он даже готов был допустить, что в релятивистской области нарушаются законы квантовой механики. В 1937 г.

Ландау указал, что при большом сжатии звезды в ходе ее эволюции становится энергетически выгодным процесс захвата электронов протонами и образование нейтронной звезды. Он даже полагал, что этот процесс может быть источником звездной энергии. Эта работа получила широкую известность как предсказание неизбежности образования нейтронных звезд при эволюции звезд достаточно большой массы.

Еще на заре своего творчества Ландау выполнил ставшую классической работу о кинетическом уравнении в случае кулоновского взаимодействия частиц. В этой работе он установил вид интеграла столкновений при кулоновском взаимодействии.

Вначале эта работа числилась в ряду чисто академических исследований, но постепенно все больше и больше ученых стали заниматься свойствами плазмы.

Физика плазмы стала одной из важнейших областей науки, особенно учитывая возможность создания плазменных термоядерных устройств.

И тогда вспомнили работу Ландау о кинетическом уравнении при кулоновском взаимодействии частиц, а интеграл столкновений стали называть интегралом столкновений Ландау. Без этого интеграла нельзя решить ни задачу о релаксации в плазме, ни задачу об электропроводности плазмы, ни задачу о нагреве плазмы.

Для каждой работы, Ландау каждый раз находил «нужную математику». Он прекрасно владел математическим анализом, но был в основном прагматиком и не интересовался глубокими математическими теориями. Многие математические догадки Ландау были просто удивительны.

Например, он сам получил преобразование Меллина и формулы суммирования Пуассона, не зная, что они давно уже известны. Преобразование Меллина ему понадобилось для решения кинетических уравнений в созданной им теории электромагнитных ливней. К формуле суммирования Пуассона Ландау пришел, построив общую теорию эффекта де Гааза—ван Альфена.

Существенно, что каждая новая математическая догадка всегда была уместной в развиваемой им теории.

Магнетизм был с юности любимой темой Ландау. Еще будучи в заграничной командировке, он нашел энергетический спектр электрона в магнитном поле (уровни Ландау) и использовал его в задаче о магнитных свойствах свободного электронного газа.

При этом он обнаружил, что, вопреки всеобщему мнению, в квантовой теории газ приобретает диамагнитный момент, частично компенсирующий так называемый паулиевский спиновый парамагнитный момент. В связи с этой работой у Ландау даже возник спор с В. Паули, и спор этот выиграл Ландау. Совместно с Е.М. Лифшицем в 1935 г.

Ландау развил теорию доменной структуры ферромагнетиков, впервые определил их форму и размеры, описал поведение восприимчивости в переменном магнитном поле и, в частности, явление ферромагнитного резонанса.

Велик был интерес Ландау к проблемам квантовой электродинамики. Еще в 1934 году он занимался исследованием образования электронно-позитроннъгх пар при столкновении тяжелых заряженных частиц.

А к пятидесятым годам относятся его работы по определению асимптотик так называемых квантовоэле-ктродинамических функций Грина (совместно с А.А. Абрикосовым и И.М. Халатниковым). В результате этих исследований Л.Д. Ландау и И.Я.

Померанчук пришли к парадоксальному выводу: благодаря поляризации вакуума реальный физический заряд электрона должен равняться нулю (так называемая «нулификация заряда» или «московский нуль»).

Решение проблемы пришло позже, после появления теорий неабелевых калибровочных полей — теории сильного взаимодействия и теории электрослабого взаимодействия, объединившей теории слабого и электромагнитного взаимодействий. Приходится только горько сожалеть, что объединение взаимодействий пришло слишком поздно, когда уже не было в живых ни Ландау, ни Померанчука…

Зная Льва Давидовича как крупнейшего теоретика-универсала, одинаково хорошо владеющего ядерной физикой, газодинамикой, физической кинетикой, И. В. Курчатов настоял на том, чтобы он с самого начала был привлечен к атомному проекту.

О значении работ Ландау в этом проекте можно отчасти судить хотя бы по словам одного из выдающихся его участников академика Л.П. Феоктистова: «…первые формулы для мощности взрыва были выведены в группе Ландау. Они так и назывались — формулы Ландау — и были совсем неплохо сделаны, особенно по тому времени.

Используя их, мы предсказывали все результаты. На первых порах ошибки составляли не более двадцати процентов. Никаких счетных машин: считали на логарифмических линейках. Никакой электроники, никаких уравнений в частных производных.

Формула выводилась из общих ядерно-гидродинамических соображений, включала в себя некие параметры, которые надо было подгонять. Так что помощь группы Ландау была очень ощутимой».

«Ядерное горение в условиях быстро меняющейся геометрии» (так назывался секретный отчет группы Ландау) представляло исключительно сложную задачу, поскольку при этом, помимо ядерной реакции, требовался учет очень многих факторов: перенос вещества, нейтронов, радиации и пр.

Позже, в начале 50-х годов ему (в целях самосохранения) пришлось работать по чужим заданиям, связанным с конкретными конструкциями ядерных и термоядерных устройств.

Но и в этом случае, испытывая неприятие этой работы, он выполнял ее на свойственном ему высоком уровне, развив эффективные методы расчетов.

Ландау был наделен странной особенностью. Отлично владевший устной речью, он становился прямо-таки мучительно беспомощным, когда приходилось что-либо писать. Одна необходимость изложения в письменной форме даже собственных своих идей уже затрудняла и сковывала его.

Поэтому сделанные совместно с ним работы, как правило, писались его соавторами. Более того, даже статьи, содержащие его собственные, без соавторов, работы, еще с середины тридцатых годов и до конца писал для него Е.М. Лифшиц. Оригинальные рукописи Ландау представляли собой лишь листочки, сплошь заполненные формулами.

Идиосинкразия Ландау к эпистолярному творчеству была хорошо известна, и все с ней мирились.

Характерно, что Ландау был доступен для всех, кто ожидал получить консультацию по любой проблеме теорфизики. Примечательно и то, что он никогда не позволял себе высокомерно отделаться от задаваемых ему вопросов. Конечно, иной раз доводилось услышать: «Ну, это меня не интересует».

Зато, как нередко выяснялось через день-другой, Ландау продолжал размышлять над вопросом и выдавал свой ответ. Но при этом, если обсуждение задачи в итоге выливалось в написание статьи, Ландау никогда не указывал свою фамилию в списке авторов, невзирая на то, что немалая часть работы фактически выполнена им.

По словам ученика Ландау, Нобелевского лауреата А. Абрикосова, «…соавторство Дау означало, что а) идея работы в значительной степени или целиком принадлежит ему и б) он реально участвовал в расчётах. Если хотя бы одно из этих условий не было выполнено, то он от соавторства отказывался.

Если бы это было не так, то число его работ (примерно 120) надо было бы увеличить в 30—40 раз, ибо все его ученики приносили ему свои работы, и не было случая, чтобы что-то в них он не внёс».

Очевидно, что в лице Ландау мы имеем гениального физика, одного из величайших в истории науки универсалов. По словам академика А.И.

Алиханьяна: «Высоким уровнем развития советская теоретическая физика в значительной степени обязана академику Льву Давидовичу Ландау – так велик его вклад в науку и так огромно значение созданной им школы. Более того, Ландау справедливо считают создателем нового стиля в науке, стиля середины XX века.

Это был замечательный человек – веселый, общительный и очень добрый. Вместе с тем он долгие годы был грозой всех приспособленцев и очковтирателей в науке, тут он был беспощаден». Академик В.Л.

Гинзбург рассказывал: «Талант Ландау так ярок, техника так отточена, что, казалось бы, он мог сделать еще больше, решить еще более трудные проблемы. Как-то, к слову пришлось, и я сказал это Льву Давидовичу, но он, словно и раньше думал об этом, очень четко ответил: «Нет, это неверно, я сделал, что мог».

По материалам А. Ахиезера, С. Герштейна и С. Илизарова.

Источник: http://www.kapitza.ras.ru/museum/landau/works.htm

Исследования Ландау по квантовой механике

Исследования Ландау по квантовой механике

Существенный вклад в развитие квантовой физики внес известный ученый Л. Д. Ландау, ставший в 1962 г. лауреатом Нобелевской премии по физике и медали им. М. Планка в 1960 г.

Замечание 1

Ландау является создателем школы физиков-теоретиков, в число учеников которой вошли такие известные ученые, как Е. Лифшиц, А. Абрикосов, Л. Горьков, А. Мигдал и др. Именем Ландау назвали Институт теоретической физики РАН.

Ученый является автором и инициатором (совместно с Е. Лифшицем) фундаментально-классического курса теоретической физики, изданного на 20 языках мира.

Теория сверхтекучести жидкого гелия Ландау

Ландау в 1941 г. объяснил теорию сверхтекучести, открытую П. Капицей в 1938 г. Любая система взаимодействующих друг с другом частиц, согласно механике квантов, может пребывать только в некоторых квантовых состояниях, в целом, характерных для всей системы. Энергия всей системы при этом может изменяться только квантами (определенными порциями).

Аналогично атому, энергия в котором меняется при испускании или поглощении светового кванта, в квантовой жидкости такое энергоизменение осуществляется за счет элементарных возбуждений, которые характеризуются определенным импульсом $р$, энергией $e(р)$, зависимой от импульса, а также спином.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Данные элементарные возбуждения имеют отношение в целом ко всей жидкости, а не только к ее отдельным частицам. В силу своих свойств, они называются квазичастицами (из-за наличия спина, импульса и т. д.). В качестве примера квазичастиц могут выступать звуковые возбуждения в $Не$ (фононы) с энергией:

$e=\bar{h}cp$

Здесь $\bar{h}$ будет постоянной Планка, а $c$ —скоростью звука.

Пока число квазичастиц относительно мало (соответствие низким температурам), их взаимодействие будет незначительным. Они, таким образом, способствуют образованию идеального газа квазичастиц.

Теория ферми-жидкости Ландау

Ферми-жидкость считается в физике квантовой жидкостью, состоящей из фермионов. Эти фермионы подвергаются некоторым физическим условиям, при которых система должна существовать при довольно низкой температуре и обладать свойством трансляционной инвариантности.

Замечание 2

В многочастичной системе взаимодействие между частицами не обязательно должно быть незначительным (электроны в металле, например). Теория ферми-жидкости, развитая в 1956 г. Д. Ландау, объясняет свойства взаимодействующей электронной системы, в частности, почему они подобны свойствам электронного газа (невзаимодействующим фермионам).

Согласно исследовательским выводам Ландау, ферми-жидкость можно считать качественно аналогичной не взаимодействующему ферми-газу. Это объясняется тем, что термодинамику и динамику системы при низкоэнергетических возбуждениях можно описать с помощью невзаимодействующих фермионов (квазичастиц).

Каждая из таких частиц несет такой же заряд, спин или импульс, какой есть у нормальной частицы. Физически это легко представить в такой картине, когда окружающие частицы искажают движение одной из них. Следствием этого становится возмущение движения остальных частиц.

Каждое возбужденное многочастичное состояние системы можно описать посредством перечисления всех занятых в импульсном пространстве состояний, подобно не взаимодействующей системе. Последствием этого становится увеличение теплоемкости ферми-жидкости линейно с температурой (как и в случае с ферми-газом). При этом отмечаются некоторые различия.

Так, энергию многочастичного состояния не будет выражать сумма энергий одночастичных возбуждений (по всем заполненным состояниям). В энергии для данного изменения $\Delta n_k$ заполненных состояний $k$ содержатся линейные и квадратичные слагаемые. Для ферми-газа слагаемые могут быть только линейными:

$\Delta n_k e_k$, где $e_k$ — это энергии для одной частицы.

Таким образом, наблюдается соответствие линейных слагаемых сверхнормированной одночастичной энергии, включающей изменение эффективной массы квазичастиц.

Квадратичные слагаемые при этом будут соответствовать усредненному взаимодействию (для среднего поля) между квазичастицами, которое характеризуется параметром ферми-жидкости и является определяющим в поведении осцилляций и спиновой плотности в ней. Такое взаимодействие не способствует рассеянию частиц между разными состояниями с некоторым импульсом.

Распределение по импульсам квазичастиц и функция Грина будут аналогичны функциям фермионов в ферми-газе. Ферми-жидкости свойственны особые вероятности распространения высокочастотного звука, получившие название «нулевой звук».

Квантовая электродинамика Ландау

Ландау сделал существенный вклад в развитие квантовой электродинамики. В частности, он рассматривает принцип соотношения неопределенностей в релятивистской области.

Замечание 3

В нерелятивистской квантовой механике фундаментальная роль отводится такому понятию, как «измерение», представляющему процесс взаимодействия квант-системы и классического объекта (прибора). Вследствие такого взаимодействия квантовая система обретает некоторые значения тех или иных динамических переменных.

Квантовая механика ограничивает возможность параллельного существования у электрона различных динамических переменных. Неопределенности $\Delta q$ и $\Delta p$, с которыми способны одновременно существовать импульс и координата, связывает соотношение:

$\Delta q\delta p=\bar{h}2$

Таким образом, с чем большей точностью будет измерена одна из представленных величин, тем с более меньшей возможно измерить другую. Данное обстоятельство играет фундаментальную роль для всей квантовой механики (в частности, — для нерелятивистской области).

Источник: https://spravochnick.ru/fizika/kvantovaya_mehanika/issledovaniya_landau_po_kvantovoy_mehanike/

Booksm
Добавить комментарий