Химическая связь. Ковалентная и ионная связи

Химическая связь: ковалентная, ионная, металлическая

Химическая связь. Ковалентная и ионная связи

Ключевые слова конспекта. Химическая связь: ковалентная (полярная и неполярная), ионная, металлическая.

Силы, которые удерживают атомы в молекулах, называются химическими связями.

Образование химической связи происходит в том случае, если этот процесс сопровождается выигрышем энергии. Эта энергия возникает, если каждый атом, образующий химическую связь, получает устойчивую электронную конфигурацию.

По способу образования и существования химическая связь может быть ковалентной (полярной, неполярной), ионной, металлической.

Ковалентная химическая связь

■ Ковалентная химическая связь — это связь, возникающая между атомами путем образования общих электронных пар за счет неспаренных электронов.

Внешние уровни большинства элементов периодической системы (кроме благородных газов) содержат неспаренные электроны, то есть являются незавершенными. В процессе химического взаимодействия атомы стремятся завершить свой внешний электронный уровень.

Например, электронная формула атома водорода: 1s1. Ее графический вариант: 

Таким образом, атом водорода в химических реакциях стремится завершить свой внешний 1 s-уровень одним s-электроном. При сближении двух атомов водорода происходит усиление притяжения электронов одного атома к ядру другого атома.

Под действием этой силы расстояния между ядрами атомов сокращаются и в результате их электронные орбитали перекрывают друг друга, создавая общую электронную орбиталь — молекулярную. Электроны каждого из атомов водорода через область перекрывания орбиталей мигрируют от одного атома к другому, то есть образуют общую электронную пару.

Ядра будут сближаться до тех пор, пока нарастающие силы отталкивания одноименных зарядов не уравновесят силы притяжения.

Переход электронов с атомной орбитали на молекулярную сопровождается снижением энергии системы (более выгодное энергетическое состояние) и образованием химической связи:

Подобным образом образуются общие электронные пары при взаимодействии атомов р-элементов. Так образуются все двухатомные молекулы простых веществ. При образовании F2 и Cl2 перекрываются по одной р-орбитали от каждого из атомов (образуется одинарная связь), а при взаимодействии атомов азота перекрываются по три р-орбитали от каждого и в молекуле азота N2 образуется тройная связь.

Электронная формула атома хлора: 1s22s22p63s23p5. Графическая формула:

Таким образом, на внешней орбитали атом хлора содержит один неспаренный р-электрон. Взаимодействие двух атомов хлора будет происходить по следующей схеме:

Электронная формула атома азота: 1s22s22p3. Графическая формула:

На внешней орбитали атома азота находятся 3 неспаренных р-электрона. Взаимодействие двух атомов азота будет происходить по следующей схеме:

Прочность связей в молекуле определяется количеством общих электронных пар у ее атомов. Двойная связь прочнее одинарной, тройная — прочнее двойной.

С увеличением количества связей между атомами сокращается расстояние между ядрами атомов, которое называют длиной связи, и увеличивается количество энергии, необходимое для разрыва связи, которое называется энергией связи.

Например, в молекуле фтора связь одинарная, ее длина составляет 1,42 нм (1 нм = 10–9 м), а в молекуле азота связь тройная, ее длина — 0,11 нм. Энергия связи в молекуле азота в 7 раз превышает энергию связи в молекуле фтора.

При взаимодействии атома водорода с атомом хлора оба атома будут стремиться завершить свои внешние энергетические уровни: водород — 1 s-уровень и хлор — 3р-уровень. В результате их сближения происходит перекрывание 1 s-орбитали атома водорода и 3р-орбитали атома хлора, а из соответствующих неспаренных электронов формируется общая электронная пара:

В молекулах Н2 и HCl область перекрывания орбиталей атомов водорода расположена в одной плоскости — на прямой, соединяющей центры атомных ядер. Такая связь называется σ-связью (сигма-связью):

Однако если в молекуле формируется двойная связь (с участием двух электронных орбиталей), то одна связь будет σ-связью, а вторая будет образована между орбиталями, расположенными параллельно друг другу. Параллельные орбитали перекроются с образованием двух общих участков, расположенных сверху и снизу от линии, соединяющей центры атомов.

Химическая связь, образующаяся в результате бокового перекрывания орбиталей — в двух местах, называется π-связью (пи-связью):

При образовании ковалентной связи меду атомами с одинаковой электроотрицательностью (Н2, F2, O2, N2) общая электронная пара будет располагаться на одинаковом расстоянии от атомных ядер.

При этом общие электронные пары принадлежат в равной степени обоим атомам одновременно, и ни на одном из атомов не будет избыточного отрицательного заряда, который несут на себе электроны.

Такой вид ковалентной связи называется неполярной.

■ Ковалентная неполярная связь — вид химической связи, образующийся между атомами с одинаковой электроотрицательностью.

В случае, когда электроотрицательности элементов, вступающих во взаимодействие, не равны, но близки по значению, общая электронная пара смещается в сторону элемента с большей электроотрицательностью. При этом на нем образуется частичный отрицательный заряд (за счет отрицательно заряженных электронов):

В результате на атомах соединения образуются частичные заряды Н+0,18 и Cl–0,18; а в молекуле возникают два полюса — положительный и отрицательный. Такую ковалентную связь называют полярной.

■ Ковалентная полярная связь — вид ковалентной связи, образующейся при взаимодействии атомов, электроотрицательность которых отличается незначительно.

Образовавшийся частичный заряд на атомах в молекуле обозначают греческой буквой 8 (дельта), а направление смещения электронной пары — стрелкой:

Ионная химическая связь

В случае химического взаимодействия между атомами, электроотрицательность которых резко отличается (например, между металлами и неметаллами), происходит почти полное смещение электронных облаков к атому с большей электроотрицательностью.

При этом, поскольку заряд ядра атома имеет положительное значение, атом, который почти полностью отдал свои валентные электроны, превращается в положительно заряженную частицу — положительный ион, или катион.

Атом, получивший электроны, превращается в отрицательно заряженную частицу — отрицательный ион, или анион:

Ион — это одноатомная или многоатомная отрицательно либо положительно заряженная частица, в которую превращается атом в результате потери или присоединения электронов.

Между разноименно заряженными ионами при их сближении возникают силы электростатического притяжения — положительно и отрицательно заряженные ионы сближаются, образуя молекулу вещества.

■ Ионная химическая связь — это связь, образующаяся между ионами за счет сил электростатического притяжения.

Процесс присоединения электронов в ходе химических взаимодействий атомами с большей электроотрицательностью называется восстановлением, а процесс отдачи электронов атомами с меньшей электроотрицательностью — окислением.

Схему образования ионной связи между атомами натрия и хлора можно представить следующим образом:

Ионная химическая связь присутствует в оксидах, гидроксидах и гидридах щелочных и щелочноземельных металлов, в солях, а также в соединениях металлов с галогенами.

Ионы могут быть как простыми (одноатомными): Cl– , Н+, Na+, так и сложными (многоатомными): NH4–. Заряд иона принято записывать вверху после знака химического элемента. Вначале записывается величина заряда, а затем его знак.

Металлическая связь

Между атомами металлов возникает особый вид химической связи, которая называется металлической. Образование этой связи обусловлено тремя особенностями строения атомов металлов:

  • на внешнем энергетическом уровне присутствуют 1—3 электрона (исключения: атомы олова и свинца (4 электрона), атомы сурьмы и висмута (5 электронов), атом полония (6 электронов));
  • атом имеет сравнительно большой радиус;
  • атом имеет большое количество свободных орбиталей (например, у Na один валентный электрон располагается на 3-м энергетическом уровне, который имеет десять орбиталей (одну s-, три р- и пять d-орбиталей).

При сближении атомов металлов происходит перекрытие их свободных орбиталей, и валентные электроны получают возможность перемещаться на близкие по значениям энергии орбитали соседних атомов. Атом, теряющий электрон, превращается в ион.

Таким образом, в металле формируется совокупность электронов, свободно перемещающихся между ионами. Притягиваясь к положительным ионам металла, электроны восстанавливают их, а затем снова отрываются, переходя к другим ионам.

Такой процесс превращения атомов в ионы и обратно происходит в металлах непрерывно. Частицы, из которых состоят металлы, называют атом-ионами.

Металлическая связь — это связь, образующаяся между атом-ионами в металлах и сплавах посредством постоянного перемещения между ними валентных электронов:

Конспект урока «Химическая связь: ковалентная, ионная, металлическая».

Следующая тема: «Валентность химических элементов».

Источник: https://uchitel.pro/%D1%85%D0%B8%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F-%D1%81%D0%B2%D1%8F%D0%B7%D1%8C/

Химическая связь. Ковалентная и ионная связи

Химическая связь. Ковалентная и ионная связи

Когда изучают строение молекулы, возникает вопрос о природе сил, обеспечивающих связь между нейтральными атомами, входящими в состав молекулы. Такие связи между атомами в молекуле называют химической связью. Выделяют два типа химических связей:

  • ионная связь,
  • ковалентная связь.

Это деление в известной мере условно. В большинстве случаев связь имеет характерные черты обоих типов связей. Только детальные теоретические и эмпирические исследования дают возможность установить в каждом случае соотношение между степенью «ионности» и «ковалентности» связи.

Эмпирически доказано, что для разъединения молекул на составные части (атомы) следует выполнить работу. Значит, процесс образования молекулы должен быть сопровожден выделением энергии.

Так, 2 атома водорода, пребывающие в свободном состоянии имеют большую энергию, чем те же атомы в двухатомной молекуле $H_2.

$ Энергия, выделяемая при образовании молекулы, служит мерой работы сил взаимодействия, которые связывают атомы в молекулу.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Опыты показали, что силы взаимодействия между атомами появляются благодаря внешним валентным электронам атомов. Об этом говорит резкое изменение оптического спектра атомов вступающих в химические реакции при сохранении без изменения рентгеновского характеристического спектра атомов не зависимо от рода химического соединения.

Мы помним, что линейчатые оптические спектры определены состоянием валентных электронов, тогда как характеристическое рентгеновское излучение определяют внутренние электроны (их состояния). Понятно, что в химических взаимодействиях должны участвовать электроны, для изменения которых требуется относительно небольшая энергия. Такими электронами являются внешние электроны атомов.

Их потенциал ионизации существенно меньше, чем у электронов внутренних оболочек.

Ионная связь

Самым простым предположением о природе химической связи атомов в молекуле является гипотеза о том, что между вешними электронами появляются силы взаимодействия электрической природы.

При этом обязательным условием устойчивости молекулы в таком случае будет существование у двух атомов, которые взаимодействуют, электрических зарядов противоположного знака. Данный тип химической связи реализуется только в части молекул. При этом атомы, вступающие во взаимодействие, превращаются в ионы.

Один из атомов присоединяет к себе один или несколько электронов и становится отрицательным ионом, при этом другой атом, отдавший электроны становится положительным ионом.

Ионная связь аналогична силам притяжения между зарядами противоположных знаков. Так, например, положительно заряженный ион натрия (${Na}+$) притягивается к отрицательно заряженному иону хлора (${Cl}-$), при этом образуется молекула NaCl.

Ионную связь называют еще гетерополярной (гетеро — разный). Молекулы, в которых реализуется ионный тип связи, называют ионными или гетерополярными молекулами.

При помощи одной ионной связи не удается объяснить структуры всех молекул. Так, невозможно понять, почему образуют молекулу два нейтральных атома водорода.

Из-за одинаковости атомов водорода нельзя считать, что один ион водорода несет положительный заряд, а другой отрицательный.

Связь, подобная связи в молекуле водорода (между нейтральными атомами) объяснима только в рамках квантовой механики. Она называется ковалентной связью.

Ковалентная связь

Химическую связь, которая осуществляется между электрически нейтральными атомами в молекуле, называют ковалентной или гомеополярной связью (гомео — одинаковый). Молекулы, которые образованы на основе такой связи, называют гомеополярными или атомными молекулами.

В классической физике известен один тип взаимодействия, которое реализуется между нейтральными телами — это гравитация. Но гравитационные силы слишком слабые для того, чтобы с их помощью можно было объяснить взаимодействие в гомеополярной молекуле.

Физическая сущность ковалентной связи заключается в следующем. Электрон в поле ядра пребывает в определенном квантовом состоянии с определенной энергией. При изменении расстояния между ядрами корректируется и состояние движения электрона, и его энергия.

Если расстояние между атомами уменьшается, то энергия взаимодействия, между ядрами увеличивается, так как между ними действуют силы отталкивания. Но, если энергия электрона с уменьшением расстояния уменьшается быстрее, чем растет энергия взаимодействия ядер, то совокупная энергия системы при этом становится меньше.

Значит, в системе, которая составлена из двух отталкивающихся ядер и электрона действуют силы, которые стремятся уменьшить расстояние между ядрами (действуют силы притяжения). Эти силы и порождают ковалентную связь в молекуле.

Они появляются из-за наличия общего электрона, то есть благодаря электронному обмену между атомами, и, значит, являются обменными квантовыми силами.

Ковалентная связь имеет свойство насыщения. Это свойство проявляется через определенную валентность атомов. Так, атом водорода может связываться с одним атомом водорода, атом углерода может быть связан с не более чем четырьмя атомами водорода.

Данная связь дает возможность объяснить валентность атомов, которая не получила в рамках классической физики исчерпывающего объяснения. Так, свойство насыщения непонятно с точки зрения природы взаимодействия в классической теории.

Ковалентная связь может наблюдаться не только в двухатомных молекулах. Она характерна для большого количества молекул неорганических соединений (окись азота, аммиак, метан и др.).

Количественная теория ковалентной связи была создана для молекулы водорода в 1927 г. В. Гайтлером и Ф Лондоном на основании понятий квантовой механики. Было показано, что причиной, которая вызывает создание молекулы с ковалентной связью, является кванотовомеханический эффект, который связан с неразличимостью электронов.

Основная энергия связи определена обменным интегралом. Молекула водорода имеет суммарный спин равный нулю, она не имеет орбитального момента и в связи с этим должна быть диамагнитна. При столкновении двух атомов водорода молекула возникает только при условии, что спины обоих электронов антипараллельны.

При параллельных спинах атомы водорода молекулы не образуют, так как отталкиваются.

Если ковалентная связь соединяет два одинаковых атома, то расположение электронного облака в молекуле является симметричным. Если ковалентная связь соединяет два разных атома, то расположение электронного облака в молекуле является асимметричным.

Молекула, обладающая асимметричным распределением электронного облака, имеет постоянный дипольный момент и, значит, является полярной.

В предельном случае, когда вероятность локализации электрона около одного из атомов превалирует над вероятностью нахождения этого электрона около другого атома, ковалентная связь переходит в ионную связь. Непреодолимой границы между ионной и ковалентной связью нет.

Пример 1

Задание: Опишите, что может произойти при сближении двух атомов.

Решение:

Если уменьшать расстояние между атомами, то возможна реализация трех ситуаций:

  1. Одна пара электронов (или более) становятся общими для рассматриваемых атомов. Эти электроны перемещаются между атомами и проводят там времени больше, чем в других местах. Это создает силы притяжения.
  2. Возникает ионная связь. При этом один (или более) электронов одного атома могут перейти к другому. Таким образом, появляются положительный и отрицательный ионы, который притягивают друг друга.
  3. Не возникает связи. Электронные структуры двух атомов перекрываются и составляют единую систему. В соответствии с принципом Паули два электрона в такой системе не могут находиться в одном квантовом состоянии. Если некоторые из электронов вынуждены были перейти на более высокие энергоуровни, чем те, которые они занимали в отдельных атомах, то система будет иметь большую энергию и будет нестабильной. Даже, если удовлетворить принцип Паули, без увеличения энергии системы, то появляется электрическая сила отталкивания между разными электронами, но данный фактор оказывает гораздо меньшее влияние на создание связи, чем принцип Паули.

Пример 2

Задание: Энергией ионизации (потенциалом ионизации) элемента называют энергию, которая необходима для удаления электрона из одного его атома. Она служит мерой того насколько тесно связаны внешний электрон или электроны. Объясните, почему энергия ионизации лития больше, чем натрия, натрия больше, чем калия, калия больше, чем рубидия.

Решение:

Перечисленные элементы являются щелочными металлами и относятся к первой группе. Атом любого из этих элементов имеет единственный внешний электрон в s — состоянии.

Электроны внутренних оболочек частично экранируют внешний электрон от ядерного заряда $(+Zq_e$), как следствие эффективный заряд, который удерживает внешний электрон, оказывается равен ${+q}_e$.

Для удаления из такого атома внешнего электрона необходимо совершить относительно небольшую работу, при этом атомы щелочных металлов превращаются в положительные ионы. Чем больше атом, тем больше расстояние валентного электрона от ядра, тем меньше сила, с которой ядро его притягивает.

Поэтому энергия ионизации убывает в данной группе элементов сверху вниз (имеется в виду периодическая система элементов). Рост энергии ионизации в каждом периоде слева направо связано с увеличением заряда ядра, при постоянстве количества внутренних экранирующих электронов.

Источник: https://spravochnick.ru/fizika/predmet_i_zadachi_atomnoy_fiziki/himicheskaya_svyaz_kovalentnaya_i_ionnaya_svyazi/

Ионная связь

Существует предположение о природе химической связи атомов в молекуле, которое говорит о появлении силы взаимодействия электрической природы между внешними электронами.

Для выполнения условия устойчивости должны существовать два взаимодействующих атома с электрическими зарядами противоположного знака. Тип химической связи может быть реализован только в части молекул. После взаимодействия атомов происходит превращение в ионы.

Когда атом присоединяет один или несколько электронов, тогда становится отрицательным ионом, а другой – положительным ионом.

Ионная связь похожа на силы притяжения между зарядами с противоположными знаками. Если положительно заряженный ион натрия Na+ будет притянут к отрицательному хлору Cl-, то получим молекулу NaCl, которая служит явным примером ионной связи.

Определение 2

Иначе говоря, ионная химическая связь называется гетерополярной (гетеро — разный). Молекулы и ионными типами связи – ионные или гетерополярные молекулы.

Понятие ионной связи не дает возможности разъяснить строения и структуры всех молекул. Необъяснимо, почему может образоваться молекула из двух нейтральных атомов водорода.

По причине одинаковой полярности атомов водорода недопустимо считать, что один из ионов водорода с положительным зарядом, другой – с отрицательным.

Связь, имеющаяся у атомов водорода (между нейтральными атомами), объясняется только квантовой механикой. Она получила название ковалентной.

Ковалентная связь

Определение 3

Химическая связь, осуществляемая между нейтральными атомами в молекуле, называется ковалентной или гомеополярной (гомео – одинаковый). Образованные на основании таких связей молекулы называют гомеополярными или атомными.

Классическая физика рассматривает только один тип взаимодействия, где возможна ее реализация между двумя телами, – гравитация. Так как гравитационные силы малы, то с их помощью сложно объяснить взаимодействие в гомеополярной молекуле.

Ковалентная связь заключается в пребывании в определенном квантовом состоянии с определенной энергией электрона в поле ядра. Если расстояния между ядрами изменяются, то это отражается на состоянии движения электрона и его энергии. При уменьшении энергии между атомами происходит увеличение энергии взаимодействия между ядрами, объясняемое действием силы отталкивания.

Когда происходит уменьшение энергии электрона при уменьшении расстояния быстрее, чем рост энергии взаимодействия ядер, тогда значение совокупной энергии системы значительно уменьшается.

Это объясняется действием сил, стремящихся уменьшить расстояние между ядрами, в системе, составленной из двух отталкивающихся ядер и электрона. Имеющиеся силы притяжения участвуют в порождении ковалентной связи молекулы.

Их появление спровоцировано наличием общего электрона, иначе говоря, благодаря электронному обмену между атомами, значит, считаются обменными квантовыми силами.

Ковалентная связь обладает свойством насыщения. Его проявление возможно благодаря определенной валентности атомов. То есть атом водорода связывается с одним атомом водорода, а атом углерода с количеством не более 4 атомов водорода.

Предложенная связь способствует объяснению валентности атомов, которое не получила его в классической физике. То есть свойство насыщения непонятно с точки зрения природы взаимодействия в классической теории.

Присутствие ковалентной связи наблюдается не только в двухатомных молекулах. Она свойственна для большого числа молекул неорганических соединений (окись азота, аммиак и другие).

В 1927 году была создана количественная теория ковалентной связи для молекулы водорода В. Гайтлером и Ф. Лондоном, основываясь на понятиях квантовой механики. Они доказали причину, вызывающую появление молекулы с ковалентной связью, а именно: квантовомеханический эффект, связанный с неразличимостью электронов.

Определение основной энергии связи происходит при наличии обменного интеграла. Суммарный спин молекулы водорода равняется 0, в ней отсутствует орбитальный момент, поэтому она диамагнитна. При столкновении двух атомов водорода молекула появляется только при параллельности спинов обоих электронов.

Это условие способствует отталкиванию атомов водорода, то есть молекулы не смогут образоваться.

При соединении двух одинаковых атомов ковалентной связью расположение электронного облака в молекуле становится симметричным. Если связь объединяет два разных атома, то электронное облако располагается асимметрично.

Молекула с асимметричным распределением электронного облака обладает постоянным дипольным моментом, то есть полярна.

Когда вероятность локализации электрона около одного из атомов преобладает над вероятностью нахождения этого электрона около другого атома, происходит переход от ковалентной связи к ионной. Четкой границы между ионной и ковалентной связи нет.

Пример 1

Произвести описание состояния при сближении двух атомов.

Решение

Когда расстояние между двумя атомами уменьшают, то возможно появление нескольких ситуаций:

  1. Одна пара электронов или более становятся общими для рассматриваемых атомов. Они могут перемещаться между атомами и находятся там дольше, чем в других местах. Это способствует созданию силы притяжения.
  2. Возникновение ионной связи. Один или более электронов способны переходить к другому. То есть это способствует появлению притягивающихся положительного и отрицательного ионов.
  3. Отсутствие возникновения связи. Электронные структуры двух атомов перекрываются и составляют единую систему. По принципу Паули такая система является неподходящей только для квантового состояния двух электронов. При переходе на более высокий энергоуровень система получит больше энергии, что приведет к нестабильности. Даже при соответствии принципу Паули без увеличения энергии системы появится электрическая сила отталкивания между разными электронами. По условию оказывается намного меньше влияния на создание связи, чем с принципом Паули.

Пример 2

Энергия ионизации (потенциал ионизации) элемента – это энергия, необходимая для вырывания электрона из одного атома. Ее считают мерой силы связи внешнего электрона или электронов. Объяснить, почему энергия ионизации лития больше, чем натрия, натрия больше, чем калия, калия больше, чем рубидия.

Решение

Все выше перечисленные элементы обладают свойствами щелочных металлов и относятся к первой группе. Любой их атом обладает единственным внешним электроном в s-состоянии.

Электроны внутренних оболочек частично экранируют внешний электрон от ядерного заряда +Zqe в качестве следствия эффективного заряда, удерживающего внешний электрон, равняется +qe.

Чтобы вырвать из такого атома внешний электрон, следует совершить работу с превращением атомов щелочных металлов в положительные ионы. Чем больше размер атома, тем больше расстояние валентного электрона от ядра, но меньше сила его притягивания.

Данная группа характеризуется убыванием энергии ионизации сверху вниз по периодической системе Менделеева. Ее рост в каждом периоде слева направо связан с увеличением заряда и постоянным количеством внутренних экранирующих электронов.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/fizika/atomy-jadra/himicheskaja-svjaz/

Тема №3 «Характеристики химических связей» | CHEM-MIND.com

Химическая связь. Ковалентная и ионная связи

Учение о химической связи составляет основу всей теоретической химии. Под химической связью понимают такое взаимодействие атомов, которое связывает их в молекулы, ионы, радикалы, кристаллы. Различают четыре типа химических связей: ионную, ковалентную, металлическую и водородную. Различные типы связей могут содержаться в одних и тех же веществах.

1. В основаниях: между атомами кислорода и водорода в гидроксогруппах связь полярная ковалентная, а между металлом и гидроксогруппой — ионная.

2. В солях кислородсодержащих кислот: между атомом неметалла и кислородом кислотного остатка — ковалентная полярная, а между металлом и кислотным остатком — ионная.

3. В солях аммония, метиламмония и т. д. между атомами азота и водорода — ковалентная полярная, а между ионами аммония или метиламмония и кислотным остатком — ионная.

4. В пероксидах металлов (например, Na2O2) связь между атомами кислорода ковалентная неполярная, а между металлом и кислородом — ионная и т. д.

Причиной единства всех типов и видов химических связей служит их одинаковая химическая природа — электронно-ядерное взаимодействие. Образование химической связи в любом случае представляет собой результат электронно-ядерного взаимодействия атомов, сопровождающегося выделением энергии.

Способы образования ковалентной связи

Ковалентная химическая связь — это связь, возникающая между атомами за счет образования общих электронных пар.

Ковалентные соединения – обычно газы, жидкости или сравнитель­но низкоплавкие твердые вещества. Одним из редких исключений явля­ется алмаз, который плавится выше 3 500 °С.

Это объясняется строением алмаза, который представляет собой сплошную решетку ковалентно связанных атомов углерода, а не совокупность отдельных молекул. Фак­тически любой кристалл алмаза, независимо от его размера, представля­ет собой одну огромную молекулу.

Ковалентная связь возникает при объединении электронов двух атомов неметаллов. Возникшая при этом структура называется молекулой.

Механизм образования такой связи может быть обменный и донорно-акцепторный.

В большинстве случаев два ковалентно связанных атома имеют раз­ную электроотрицательность и обобществленные электроны не принад­лежат двум атомам в равной степени. Большую часть времени они нахо­дятся ближе к одному атому, чем к другому.

В молекуле хлороводорода, например, электроны, образующие ковалентную связь, располагаются ближе к атому хлора, поскольку его электроотрицательность выше, чем у водорода. Однако разница в способности притягивать электроны не столь велика, чтобы произошел полный перенос электрона с атома водо­рода на атом хлора.

Поэтому связь между атомами водорода и хлора можно рассматривать как нечто среднее между ионной связью (полный перенос электрона) и неполярной ковалентной связью (симмет­ричное расположение пары электронов между двумя атомами). Частич­ный заряд на атомах обозначается греческой буквой δ.

Такая связь называется полярной ковалентной связью, а о молеку­ле хлороводорода говорят, что она полярна, т. е. имеет положительно заряженный конец (атом водорода) и отрицательно заряженный конец (атом хлора).

1. Обменный механизм действует, когда атомы образуют общие электронные пары за счет объединения неспаренных электронов.

1) Н2 — водород.

Связь возникает благодаря образованию общей электронной пары s-электронами атомов водорода (перекрыванию s-орбиталей).

2) HCl — хлороводород.

Связь возникает за счет образования общей электронной пары из s- и р-электронов (перекрывания s-р-орбиталей).

3) Cl2: В молекуле хлора ковалентная связь образуется за счет непарных р-электронов (перекрывание р-р-орбиталей).

4) N2: В молекуле азота между атомами образуются три общие электронные пары.

Донорно-акцепторный механизм образования ковалентной связи

Донор имеет электронную пару, акцептор — свободную орбиталь, которую эта пара может занять.

В ионе аммония все четыре связи с атомами водорода ковалентные: три образовались благодаря созданию общих электронных пар атомом азота и атомами водорода по обменному механизму, одна — по донорно-акцепторному механизму.

Ковалентные связи классифицируют по способу перекрывания электронных орбиталей, а также по смещению их к одному из связанных атомов. Химические связи, образующиеся в результате перекрывания электронных орбиталей вдоль линии связи, называются σ-связями (сигма-связями). Сигма-связь очень прочная.

р-орбитали могут перекрываться в двух областях, образуя ковалентную связь за счет бокового перекрывания.

Химические связи, образующиеся в результате «бокового» перекрывания электронных орбиталей вне линии связи, т. е. в двух областях, называются пи-связями.

По степени смещенности общих электронных пар к одному из связанных ими атомов ковалентная связь может быть полярной и неполярной.

Ковалентную химическую связь, образующуюся между атомами с одинаковой электроотрицательностью, называют неполярной. Электронные пары не смещены ни к одному из атомов, т. к.

атомы имеют одинаковую электроотрицательность — свойство оттягивать к себе валентные электроны от других атомов. Например,

т. е. посредством ковалентной неполярной связи об­разованы молекулы простых веществ-неметаллов. Ковалентную химическую связь между атома­ми элементов, электроотрицательности которых различаются, называют полярной.

Например, NH3 — аммиак. Азот более электро­отрицательный элемент, чем водород, поэтому об­щие электронные пары смещаются к его атому.

Характеристики ковалентной связи: длина и энергия связи

Характерные свойства ковалентной связи — ее длина и энергия. Длина связи — это расстояние между ядрами атомов. Химическая связь тем проч­нее, чем меньше ее длина.

Однако мерой прочности связи является энергия связи, которая определяет­ся количеством энергии, необходимой для разрыва связи. Обычно она измеряется в кДж/моль.

Так, согласно опытным данным, длины связи молекул H2, Cl2 и N2 соответственно составляют 0,074, 0,198 и 0,109 нм, а энергии связи соответственно равны 436, 242 и 946 кДж/моль.

Ионы. Ионная связь

Для атома существует две основные возможности подчиниться прави­лу октета. Первая из них — образование ионной связи. (Вторая — образова­ние ковалентной связи, о ней речь пойдет ниже). При образовании ион­ной связи атом металла теряет электроны, а атом неметалла приобретает.

Представим себе, что «встречаются» два атома: атом металла I группы и атом неметалла VII группы. У атома металла на внешнем энергетическом уровне находится единственный электрон,  а атому неметалла как раз не хватает именно одного электрона, чтобы его внешний уровень оказался завершенным.

Первый атом легко отдаст второму свой далекий от ядра и слабо связанный с ним электрон, а второй предоставит ему свободное место на своем внешнем электронном уровне.

Тогда атом, лишенный одного своего отрицательного заряда, станет положительно заряженной частицей, а второй превратится в отрицательно заряженную частицу благодаря полученному электрону. Такие частицы называются ионами.

Ионная связь — это химическая связь, возникающая между ионами. Цифры, показывающие число атомов или молекул, называются коэффициентами, а цифры, показывающие число атомов или ионов в молекуле, называют индексами.

Водородная связь

Химическую связь между положительно поляризованными атомами водорода одной молекулы (или ее части) и отрицательно поляризованными атомами сильно электроотрицательных элементов, имеющих наподеленные электронные пары (F, O, N и реже S и Cl), другой молекулы (или ее части) называют водородной. Механизм образования водородной связи имеет частично электростатический, частично донорно-акцепторный характер.

Примеры межмолекулярной водородной связи:

При наличии такой связи даже низкомолекулярные вещества могут быть при обычных условиях жидкостями (спирт, вода) или легко сжижающимися газами (аммиак, фтороводород). В биополимерах — белках (вторичная структура) — имеется внутримолекулярная водородная связь между карбонильным кислородом и водородом аминогруппы:

Молекулы полинуклеотидов — ДНК (дезокси­рибонуклеиновая кислота) — представляют собой двойные спирали, в которых две цепи нуклеотидов связаны друг с другом водородными связями.

При этом действует принцип комплементарности, т. е.

эти связи образуются между определенными пара­ми, состоящими из пуринового и пиримидиново­го оснований: против аденинового нуклеотида (А) располагается тиминовый (Т), а против гуанинового (Г) — цитозиновый (Ц).

Вещества с водородной связью имеют молеку­лярные кристаллические решетки.

Правило Октета

Электронная конфигурация атома особенно стабильна (иными словами, имеет минимальный запас энергии, что всегда предпочтитель­но), когда внешняя электронная оболочка заполнена. Поэтому атомы склонны к таким превращениям, в результате которых во внешнем слое оказывается „магическое” число электронов — восемь.

Исключение составляют атомы первых двух элементов периодической системы, для которых предпочтительно образование двухэлектронной внешней оболочки.
Модели атомов инертных газовПравило октета объясняет, почему инертные газы (группа VIIIA) гелий, неон и аргон обычно не вступают в химические реакции.

Их внешняя электронная оболочка уже заполнена, следовательно нет необ­ходимости во взаимодействии с другими атомами с целью принять, отдать или объединить электроны. Элементы 3—7-го периодов также обычно подчиняются правилу октета (т. е. склонны к заполнению s- и р-орбиталей, хотя могут иметься d- и f-орбитали).

Согласно правилу октета большинство атомов склонно прини­мать, отдавать или объединять электроны с тем, чтобы создать восьмиэлектронную внешнюю оболочку.

Определение типа связи

По электроотрицательности можно узнать тип связи: Разность электроотрицательностей элементов в соединении (ΔX) позволит судить о типе химической связи. Если величина Δ X = 0  –  связь ковалентная неполярная.

При разности электроотрицательностей до 2,0 связь называют ковалентной полярной, например: связь H—F в молекуле фтороводорода HF: Δ X = (3,98 – 2,20) = 1,78 Связи с разностью электроотрицательностей больше 2,0 считаются ионными.

Например: связь Na—Cl в соединении NaCl: Δ X = (3,16 – 0,93) = 2,23.

Шпаргалка

Химическая связь

Справочный материал для прохождения тестирования:

Таблица Менделеева Таблица растворимости

Источник: https://www.chem-mind.com/2017/03/08/%D1%85%D0%B0%D1%80%D0%B0%D0%BA%D1%82%D0%B5%D1%80%D0%B8%D1%81%D1%82%D0%B8%D0%BA%D0%B8-%D1%85%D0%B8%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85-%D1%81%D0%B2%D1%8F%D0%B7%D0%B5%D0%B9/

Booksm
Добавить комментарий