Гидродинамика жидкости

Гидродинамика, теория и примеры задач

Гидродинамика жидкости

Описывает взаимодействие жидкости (реального газа) с движущимися и неподвижными поверхностями.

Перемещение жидкости принципиально отличается от движения твердых тел. В своем движении жидкость не может сохранять неизменным расстояние между ее частицами.

Если рассматривать движение элементарного объема жидкости, то его можно представить как сумму трех движений: поступательного и вращательного перемещения всего объема жидкости как целого, и движение разных частиц рассматриваемого объема по отношению друг к другу. При движении жидкости следует учитывать массовые силы и силы трения (вязкость).

Задачи гидродинамики

Жидкость, находящаяся в движении обычно характеризуется при помощи двух параметров: скорости течения () и гидродинамического давления (). Следовательно, к основным задачам гидродинамики относят определения этих параметров при известной системе действующих внешних сил.

В процессе движения жидкости и способны изменяться в зависимости от времени и точки в пространстве. При этом выделяют два типа движения жидкости установившееся и неустановившееся.

Движение, при котором и являются постоянными во времени для любой точки жидкости в пространстве и являются функция координат, называют установившимся. При неустановившемся течении скорость и давление являются функциями и от времени и от координат.

В гидродинамике используют понятие жидкой частицы. Это условно выделяемый элементарный объем жидкости, изменением формы которого можно пренебречь. Частица жидкости при своем движении описывает кривую, которая носит название траектории движения.

Потоком жидкости считают перемещающуюся массу жидкости, которая полностью или частично ограничена поверхностями. Эти поверхности могут образовываться самой жидкостью на фазовой границе или быть твердыми. Границы потоков – это стенки трубы, канала, поверхность, которую жидкость обтекает, открытая поверхность жидкости.

Небольшая сжимаемость жидкости позволяет во многих случаях полностью пренебречь изменением ее объема. Тогда говорят о несжимаемой жидкости. Это идеализация, которую часто используют. Говорят, что несжимаемая жидкость – предельный случай сжимаемой жидкости, когда для получения бесконечно больших давлений, достаточно бесконечно малых сжатий.

Жидкость, в которой при любом ее движении не возникают силы внутреннего трения, называют идеальной. Иначе говоря, в идеальной жидкости существуют только силы нормального давления, которые однозначно определяются степенью сжатия и температурой жидкости. Модель идеальной жидкости используют тогда, когда скорости изменения деформаций в жидкости малы.

Физическая величина, которая определяется нормальной силой, с которой жидкость действует на единицу площади поверхности, называют давлением ():

Давление при равновесии жидкости подчиняется закону Паскаля:

Давление в любой точке покоящейся жидкости одинаково во всех направлениях. Давление одинаково передается во всем объеме, которое жидкость занимает.

Сила давления на нижние слои жидкости больше, чем на верхние. Вследствие этого на тело, погруженное в жидкость (газ) действует выталкивающая сила, называемая силой Архимеда ():

где – плотность жидкости; – объем тела, погруженного в жидкость.

В состоянии равновесия жидкости (газа) давление () меняется в зависимости от плотности ( и температуры () и однозначно определено ими. Соотношение:

в состоянии равновесия называют уравнением состояния.

Основные уравнения равновесия и движения жидкостей

Силы, действующие в жидкости, обычно разделяют на массовые (объемные) и поверхностные. Примером массовых сил может служить сила тяжести. Обозначим – объемную плотность массовых сил. Поверхностные силы – это силы, которые действуют на каждый объем жидкости, благодаря нормальным и касательным напряжениям, действующим на его поверхности со стороны соседних частей жидкости.

Основным уравнением гидростатики является выражение:

Уравнение (4) показывает, что при равновесии жидкости плотность силы, действующая на единицу объема жидкости ( есть градиент скалярной функции. Это необходимое и достаточное условие консервативности плотности силы . Получается, что для равновесия жидкости надо, чтобы поле сил, в котором находится жидкость, было консервативным. В неконсервативных силовых полях равновесие не возможно.

В координатной форме формулу (4) запишем как:

Основным уравнением гидродинамики идеальной жидкости является выражение:

где ускорение жидкости в рассматриваемой точке. Уравнение (6) называется уравнением Эйлера.

Уравнением Бернулли получено швейцарским физиком Д. Бернулли в 1738 г. Это выражение закона сохранения энергии относительно установившегося течения идеальной жидкости:

где – статическое давление – давление жидкости на поверхности тела, которое она обтекает; — динамическое давление; — гидростатическое давление; — высота столба жидкости.

Графически движение жидкости изображают при помощи линий тока. Их проводят так, что касательные к ним совпадают по направлению с вектором скорости в соответствующих точках пространства. Жидкость, ограниченную линиями тока называют трубкой тока. При стационарном течении жидкости форма и расположение линий тока не изменяется.

Движение несжимаемой жидкости подчиняется уравнению неразрывности, которое записывают как:

и – сечения трубки тока.

Примеры решения задач

Источник: http://ru.solverbook.com/spravochnik/fizika/gidrodinamika/

Гидродинамика жидкости

Гидродинамика жидкости

В механике жидкости такому понятию, как «гидродинамика», придается достаточно широкий смысл. Гидродинамика жидкости, в свою очередь, рассматривает несколько направлений для изучения.

Так, основными из направлений являются следующие:

  • гидродинамика идеальной жидкости;
  • гидродинамика жидкости в критическом состоянии;
  • гидродинамика вязкой жидкости.

Гидродинамика идеальной жидкости

Рисунок 1. Основы гидродинамики. Автор24 — интернет-биржа студенческих работ

Идеальная жидкость в гидродинамике представляет собой воображаемую несжимаемую жидкость, в которой вязкость будет отсутствовать. Также в ней не будет наблюдаться присутствие теплопроводности и внутреннего трения. В связи с отсутствием в идеальной жидкости внутреннего трения, в нем также не будут фиксироваться касательные напряжения между двумя соседствующими слоями жидкости.

Моделью идеальной жидкости можно воспользоваться в физике в случае теоретического рассмотрения задач, в которых вязкость не будет являться определяющим фактором, что позволяет ею пренебречь.

Подобная идеализация, в частности, может быть допустимой во многих случаях течения, которые рассматривает гидроаэромеханика, где при этом дается качественное описание реальных течений жидкостей, достаточно удаленных от поверхностей раздела с неподвижной средой.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Уравнения Эйлера-Лагранжа (полученные Л.Эйлером и Ж.Лагранжем в 1750 г.

) представлены в физике в формате основных формул вариационного исчисления, посредством привлечения которых ведется поиск стационарных точек и экстремумов функционалов.

В частности, подобные уравнения известны своим широким использованием в рассмотрении задач оптимизации, и также (в совокупности с принципом наименьшего действия) применяются с целью вычисления траекторий в механике.

В теоретической физике уравнения Лагранжа представлены в виде классических уравнений движения в контексте их получения из написанного явно выражения для действия (что называется лагранжиана).

Рисунок 2. Уравнение Эйлера-Лагранжа. Автор24 — интернет-биржа студенческих работ

Применение таких уравнений с целью определения экстремума функционала в некотором смысле подобно задействованию теоремы дифференциального исчисления, согласно утверждениям которой, лишь в точке обращения первой производной в ноль гладкая функция обретает способность иметь экстремум (при векторном аргументе к нулевому значению приравнивается нулю градиент функции, иными словами — производная по векторному аргументу). Соответственно, это представляет прямое обобщение рассматриваемой формулы на случай функционалов (функций бесконечно мерного аргумента).

Гидродинамика жидкости в критическом состоянии

Рисунок 3. Следствия из уравнения Бернулли. Автор24 — интернет-биржа студенческих работ

Замечание 1

В случае исследования околокритического состояния среды, ее течению будет уделяться значительно меньше внимания в сравнении с акцентом на физические свойства, несмотря на невозможность обладать свойством неподвижности для реальной жидкой субстанции.

Провокаторами перемещения отдельных частей относительно друг друга выступают:

  • температурные неоднородности;
  • перепады давления.

В случае описания динамики вблизи критической точки, оказывается несовершенными традиционные гидродинамические модели, сориентированные на обычные среды. Это обусловлено порождением новых законов движения новыми физическими свойствами.

Выделяются также динамические критические явления, обнаруживаемые в условиях перемещения массы и переноса тепла.

В частности, процесс рассасывания (или релаксации) температурных неоднородностей, обусловленный механизмом теплопроводности, будет происходить крайне медленно.

Так, если, например, в околокритической жидкости будет изменена температура хотя бы на сотые доли градуса, на установление прежних условий уйдут многие часы, а, возможно, даже и несколько суток.

В качестве еще одной значимой особенности околокритических жидкостей можно назвать их удивительную подвижность, которую можно объяснить за счет высокой гравитационной чувствительности. Так, в экспериментах, осуществляемых в условиях космического полета, удалось выявить способность к инициированию весьма заметных конвективных движений даже у остаточных неоднородностей теплового поля.

В ходе движения околокритических жидкостей начинают возникать эффекты разновременных масштабов, зачастую описываемые различными моделями, что позволило сформировать (с развитием представлений о моделировании в данной области) целую последовательность усложняющихся моделей, обладающих так называемой иерархической структурой. Так, в данной структуре могут рассматриваться:

  • модели конвекции несжимаемой жидкости, учитывая разность плотностей только в архимедовой силе (модель Обербека-Буссинеска, наиболее всего она распространена для простых жидких и газовых сред);
  • полные гидродинамические модели (с включением нестационарных уравнений динамики и теплопереноса и учетом свойства сжимаемости и переменных теплофизических свойств среды) в совокупности с уравнением состояния, предполагающим присутствие критической точки).

В настоящее время, таким образом, можно говорить о возможности активного развития нового направления в механике сплошных сред, таком, как гидродинамика околокритических жидкостей.

Гидродинамика вязкой жидкости

Определение 1

Вязкость (или внутреннее трение) является свойством реальных жидкостей, выраженным в оказании их сопротивления перемещениям одной части жидкости относительно другой. В момент перемещения одних слоев реальной жидкости относительно других будут возникать силы внутреннего трения, направленные к поверхности таких слоев по касательной.

Действие подобных сил выражается в том, что со стороны движущегося быстрее слоя на то слой, который движется медленнее, оказывает непосредственное воздействие ускоряющая сила. Наряду с тем, со стороны более медленно движущегося слоя в отношении быстродвижущегося окажет свое воздействие тормозящая сила.

Идеальная жидкость (жидкость, исключающая свойство трения) представляет собой абстракцию. Вязкость (в большей или меньшей степени) присуща всем реальным жидкостям. Проявление вязкости выражено в том, что возникшее в жидкости или газе движение (после устранения вызвавших его причин и их последствий) постепенно прекращает свою работу.

Источник: https://spravochnick.ru/fizika/mehanika_sploshnyh_sred/gidrodinamika_zhidkosti/

Гидродинамика вязкой жидкости (стр. 1 из 2)

Гидродинамика жидкости

Введение

Гидродинамика (от гидро… и динамика), раздел гидромеханики, изучает движение жидкостей и воздействие их на обтекаемые ими твердые тела.

Теоретические методы гидродинамики основаны на решении точных или приближенных уравнений, описывающих физические явления в движущихся жидкости или газе.

В экспериментальной гидродинамике возникающие задачи исследуются на моделях, обтекаемых жидкостью или газом, при этом должны соблюдаться условия подобия теории. Результаты гидродинамики используют при проектировании кораблей, самолетов, ракет и др.

Гидродинамика представляет собой раздел механики сплошных сред, в котором изучается движение несжимаемых жидкостей и взаимодействие несжимаемых жидкостей с твердыми телами, — использует единый подход к изучению жидкостей и газов.

В механике с большой степенью точности жидкости и газы рассматриваются как сплошные, непрерывно распределенные в занятой ими части пространства. Плотность же газов от давления зависит существенно.

Из опыта известно, что сжимаемостью жидкости и газа во многих задачах можно пренебречь и пользоваться единым понятием несжимаемой жидкости — жидкости, плотность которой всюду одинакова и не изменяется со временем.

Если в покоящуюся жидкость поместить тонкую пластинку, то части жидкости, находящиеся по разные стороны от нее, будут действовать на каждый ее элемент ∆S с силами ∆F, которые независимо от того, как пластинка ориентирована, будут равны по модулю и направлены перпендикулярно площадке ∆S, так как наличие касательных сил привело бы частицы жидкости в движение.

Физическая величина, определяемая нормальной силой, действующей со стороны жидкости на единицу площади, называется давлением р жидкости:

P = ∆F/∆S.

Единица давления — паскаль (Па): 1 Па равен давлению, создаваемому силой 1 Н, равномерно распределенной по нормальной к ней поверхности площадью 1 м2 (1 Па=1 Н/м2).

Давление при равновесии жидкостей (газов) подчиняется закону Паскаля*: давление в любом месте покоящейся жидкости одинаково по всем направлениям, причем давление одинаково передается по всему объему, занятому покоящейся жидкостью.

1. Коэффициент вязкости. Течение по трубе

Вязкость (внутреннее трение) — это свойство реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой.

При перемещении одних слоев реальной жидкости относительно других возникают силы внутреннего трения, направленные по касательной к поверхности слоев.

Действие этих сил проявляется в том, что со стороны слоя, движущегося быстрее, на слой, движущийся медленнее, действует ускоряющая сила. Со стороны же слоя, движущегося медленнее, на слой, движущийся быстрее, действует тормозящая сила.

Идеальная жидкость, т. е. жидкость без трения, является абстракцией. Всем реальным жидкостям и газам в большей или меньшей степени присуща вязкость или внутреннее трение. Вязкость проявляется в том, что возникшее в жидкости или газе движение после прекращения действия причин, его вызвавших, постепенно прекращается.

Для выяснения закономерностей, которым подчиняются силы внутреннего трения, рассмотрим следующий опыт. В жидкость погружены две параллельные друг другу пластины, линейные размеры которых значительно превосходят расстояние между ними d. Нижняя пластина удерживается на месте, верхняя приводится в движение относительно нижней с некоторой скоростью v0.

Опыт дает, что для перемещения верхней пластины с постоянной скоростью v0 необходимо действовать на нее с вполне определенной постоянной по величине силой F.

Раз пластина не получает ускорения, значит, действие этой силы уравновешивается равной ей по величине противоположно направленной силой, которая, очевидно, есть сила трения, действующая на пластину при ее движении в жидкости. Обозначим ее Fтр.

Варьируя скорость пластины v0, площадь пластин S и расстояние между ними d, можно получить, что

(1)

где

— коэффициент пропорциональности, зависящий от природы и состояния (например, температуры) жидкости и называемый коэффициентом внутреннего трения или коэффициентом вязкости, или просто вязкостью жидкости (газа).

При движении жидкости в круглой трубе скорость равна нулю у стенок трубы и максимальна на оси трубы. Полагая течение ламинарным, найдем закон изменения скорости с расстоянием r от оси трубы.

Выделим воображаемый цилиндрический объем жидкости радиуса r и длины l. При стационарном течении в трубе постоянного сечения скорости всех частиц жидкости остаются неизменными. Следовательно, сумма внешних сил, приложенных к любому объему жидкости, равна нулю. На основания рассматриваемого цилиндрического объема действуют силы давления, сумма которых равна

.Эта cила действует в направлении движения жидкости. Кроме того, на боковую поверхность цилиндра действует сила трения, равная (имеется в виду значение duldr на расстоянии r от оси трубы). Условие стационарности имеет вид (1)

Скорость убывает с расстоянием от оси трубы. Следовательно, duldr отрицательна и ldu/drl=—duldr. Учтя это, преобразуем соотношение следующим образом:

Разделив переменные, получим уравнение:

Интегрирование дает, что

(2)

Постоянную интегрирования нужно выбрать так, чтобы скорость обращалась в нуль на стенках трубы, т. е. при r=R (R — радиус трубы). Из этого условия

Подстановка значения С в (2) приводит к формуле

(3)

Значение скорости на оси трубы равно

(4)

С учетом этого формуле (3) можно придать вид

(5)

Таким образом, при ламинарном течении скорость изменяется с расстоянием от оси трубы по параболическому закону.

2. Формула Пуазейля.

Метод Пуазейля. Этот метод основан на ламинарном течении жидкости в тонком капилляре. Рассмотрим капилляр радиусом R и длиной /. В жидкости мысленно выделим цилиндрический слой радиусом r и толщиной dr. Сила внутреннего трения , действующая на боковую поверхность этого слоя,

где dS — боковая поверхность цилиндрического слоя; знак минус означает, что при возрастании радиуса скорость уменьшается.

Для установившегося течения жидкости сила внутреннего трения, действующая на боковую поверхность цилиндра, уравновешивается силой давления, действующей на его основание:

После интегрирования, полагая, что у стенок имеет место прилипание жидкости, т. е. скорость на расстоянии R от оси равна нулю, получаем

Отсюда видно, что скорости частиц жидкости распределяются по параболическому закону, причем вершина параболы лежит на оси трубы. За время t из трубы вытечет жидкость, объем которой

откуда вязкость

3. Формула Стокса.

Формула Стокса. При малых Re, т. е. при небольших скоростях движения (и небольших /), сопротивление среды обусловлено практически только силами трения. Стокс установил, что сила сопротивления в этом случае пропорциональна коэффициенту динамической вязкости

, скорости v движения тела относительно жидкости и характерному размеру тела I: (предполагается, что расстояние от тела до границ жидкости, например до стенок сосуда, значительно больше размеров тела). Коэффициент пропорциональности зависит от формы тела. Для шара, если в качестве / взять радиус шара r, коэффициент пропорциональности оказывается равным 6я. Следовательно, сила сопротивления движению шарика в жидкостях при небольших скоростях в соответствии с формулой Стокса равна (1)

Метод Стокса. Этот метод определения вязкости основан на измерении скорости медленно движущихся в жидкости небольших тел сферической формы.

На шарик, падающий в жидкости вертикально вниз, действуют три силы: сила тяжести

(р — плотность шарика), сила Архимеда (р' — плотность жидкости) и сила сопротивления, эмпирически установленная Дж. Стоксом: , где r — радиус шарика, v — его скорость. При равномерном движении шарика или

Источник: https://mirznanii.com/a/313327/gidrodinamika-vyazkoy-zhidkosti

Основы гидравлики

Гидродинамика жидкости


Гидродинамикой называют раздел гидравлики, в котором изучается движение жидкости, обусловленное действием приложенных к ней внешних сил.

Состояние реальной движущейся жидкости в каждой ее точке характеризуется не только плотностью и вязкостью, но и скоростью частиц жидкости, а также гидродинамическим давлением.

Под частицей в гидродинамике понимают условно выделенный объем жидкости, который настолько мал, что можно пренебречь изменением его формы при движении.

При изучении законов движения реальной жидкости необходимо учитывать ее вязкость, что усложняет решение задач гидродинамики, поэтому рассмотрим вначале уравнения движения идеальной жидкости, а затем внесем в них поправки, учитывающие свойства реальной жидкости.

Основным объектом изучения гидродинамики является поток жидкости, под которым понимают движение массы жидкости, ограниченной полностью или частично какой-либо поверхностью (поверхностями).

Ограничивающая поверхность может быть твердой (стенки труб, берега и дно рек, каналов и т. д.

), жидкой (граница двух жидкостей с разными физическими свойствами) и газообразной (например, граница между поверхностью жидкости и атмосферой и т. п.).

Движение жидкости может быть установившимся (стационарным) и неустановившимся (нестационарным).

Установившимся называют движение, при котором давление и скорость жидкости в любой точке занятого ею пространства с течением времени не изменяются.

При неустановившемся движении в каждой точке пространства, занятом жидкостью, скорость и давление изменяются с течением времени.

Примером установившегося движения может послужить истечение жидкости из сосуда с поддерживаемым постоянно уровнем через коническую трубку (см. рис. 1). Скорость движения жидкости в разных сечениях трубки будет различаться, но в каждом из сечений эта скорость будет постоянной, не изменяющейся во времени.

Если же в подобном опыте уровень жидкости в сосуде не поддерживать постоянным, то движение жидкости по той же конической трубке будет иметь нестационарный (неустановившийся) характер, поскольку в сечениях трубки скорость не будет постоянной во времени (будет уменьшаться с понижением уровня жидкости в сосуде).

Движение жидкости может быть равномерным и неравномерным. Равномерным называют движение, при котором скорости в сходственных точках двух смежных сечений потока жидкости равны между собой. В противном случае движение неравномерное.

Если обратиться к предыдущему опыту с сосудом и конической трубкой, то можно заметить, что истечение жидкости через коническую трубку в обоих случаях (с постоянным и переменным уровнем в сосуде) равномерным не будет.

Коническая трубка имеет непостоянное сечение, и скорость жидкости при движении по ней будет непрерывно изменяться.

Если заменить в этом опыте коническую трубку цилиндрической, то движение жидкости в ней будет равномерным.

Различают напорное и безнапорное движение жидкости.

Если стенки полностью ограничивают поток жидкости, то движение жидкости называют напорным (например, перемещение жидкости по полностью заполненным трубам).

Если же ограничение потока стенками частичное (например, движение воды в реках, каналах), то такое движение называют безнапорным.
Напорные потоки иногда называют сплошь заполненными, а безнапорные – открытыми руслами.

Для того чтобы движение жидкости можно было считать полностью определенным, необходимо знать распределение величины и направления скорости частиц в потоке, а также зависимость этого распределения от времени.

Направление скоростей в потоке характеризуется линией тока.
Линия тока – воображаемая кривая, проведенная внутри потока жидкости таким образом, что скорости всех частиц, находящихся на ней в данный момент времени, касательны к этой кривой (см. рисунок).

Линия тока отличается от траектории тем, что последняя отражает путь какой-либо одной частицы за некоторый промежуток времени, тогда как линия тока характеризует направление движения совокупности частиц жидкости в данный момент времени.

При установившемся движении линии тока совпадает с траекториями движения частиц жидкости.

***



Если в поперечном сечении потока жидкости выделить элементарную площадку ΔS и провести через точки ее контура линии тока, то получится так называемая трубка тока (см. рисунок). Жидкость, находящаяся внутри трубки тока, образует элементарную струйку. Поток жидкости можно рассматривать как совокупность всех движущихся элементарных струек.

Живым сечением элементарной струйки называют поверхность, нормальную (перпендикулярную) к вектору скорости, т. е. к линии тока. Скорость движения частиц жидкости во всех точках каждого живого сечения элементарной струйки можно считать одинаковой ввиду незначительных размеров сечения, а сами сечения по той же причине можно считать плоскими.

Живое сечение потока определяют как сумму живых сечений элементарных струек, из которых он состоит. Следовательно, живое сечение потока представляет собой поверхность, во всех точках которой скорости частиц жидкости нормальны к элементам этой поверхности.

Следует отметить, что живое сечение может иметь форму плоской поверхности лишь для идеальной жидкости, в общем случае (для реальных жидкостей) оно имеет форму сложной криволинейной поверхности, т. е.

скорости частиц потока жидкости распределены в любом его живом сечении неравномерно.

Линию соприкосновения жидкости с твердыми стенками, ограничивающими поток в данном живом сечении, называют смоченным периметром (см. рисунок). Отношение площади живого сечения потока S к длине смоченного периметра χ называют гидравлическим радиусом потока жидкости:

R = S/χ.

Для труб круглого сечения, заполненных жидкостью, гидравлический радиус определяют по формуле:

R = d/4.

Аналогично определяют гидравлический радиус в трубах других сечений:

для эллиптических труб с осями a и b:

R = ab/[2/3(a + b) — √ab];

для трубы в виде равностороннего треугольника со стороной a:

R = a/4√3;

для трубы в виде прямоугольника со сторонами a и b:

R = ab/2(a + b);

для квадратной трубы со стороной a:

R = a/4.

Объем или масса жидкости, протекающей через живое сечение потока в единицу времени, называют объемным (Q) или массовым (m) расходом жидкости.
Объемный расход жидкости Q измеряется в м3/с или л/с, массовый расход m – в кг/с. Объемный расход связан с массовым расходом зависимостью Q = m/ρ.

Плотность жидкости может быть различной в разных участках потока, и даже в разных точках живого сечения, например, из-за неравномерности распределения температуры.

В общем случае непостоянной является и скорость в различных точках живого сечения потока: в центре потока она обычно больше, а у стенок, ограничивающих поток, — меньше (вплоть до полной остановки частиц).

В связи с этим вводят понятие средней скорости потока, которую определяют, как отношение расхода к площади живого сечения:

v = Q/S,   откуда   Q = vS.

***

Режимы движения жидкости и число Рейнольдса



Олимпиады и тесты

Источник: http://k-a-t.ru/gidravlika/5_gidrodinamika/index.shtml

Booksm
Добавить комментарий