Генераторы гармонических колебаний

Генераторы гармонических колебаний

Генераторы гармонических колебаний

Назначение и классификация генераторов.

Генератором гармонических колебаний называют электронное устройство, преобразующее электрическую энергию источника постоянного тока в энергию незатухающих синусоидальных колебаний заданной частоты. Структура генератора содержит в своем составе активный элемент и частотно-избирательный четырехполюсник.

В качестве активных элементов используют транзисторы и интегральные усилители. Гармонические колебания в генераторах поддерживаются резонансными LC-контурами или с помощью фазирующих RC-цепей, включаемых в цепь обратной связи усилителей.

Первые называют LC-генераторами, а вторые – RC-генераторами.

Условия самовозбуждения автогенераторов.

При охвате усилителя положительной обратной связью он самовозбуждается, так как коэффициент усиления на определенных частотах достигает бесконечно большого значения.

Такая схема работает в автоколебательном режиме и является автогенератором. Т.

е, автогенератор гармонических колебаний представляет собой усилитель с коэффициентом усиления Ки, охваченный положительной обратной связью с коэффициентом передачи напряжения β (рис. 65).

Рис. 65

Напряжение, снимаемое с выхода звена обратной связи:

Uос = βUвых (54)

а напряжение на выходе генератора

Uвых = Ки Uос , т.е.

Uвых = KиβUвых

Следовательно, установившиеся колебания будут существовать в схеме при условии

Kиβ = 1 (55)

При Kиβ > 1 амплитуда колебаний будет непрерывно возрастать. Условие (55) можно записать следующим образом:

Kиβ[i(φk+ φβ)] =1 (56)

Так как Kиβ– величина комплексная, процесс самовозбуждения автогенератора, описываемый выражением (56), можно охарактеризовать двумя формулами:

Kиβ = 1 (57)

φk + φβ=2πn (58)

Уравнение (57) показывает, что для существования автоколебательного режима ослабление сигнала, вносимое звеном обратной связи, должно компенсироваться усилителем. Это условие баланса амплитуд.

Уравнение (58) отражает условие баланса фаз, при котором сдвиг фаз вносимый усилителем и звеном обратной связи должен равняться 2πn, где n= 0,1,2, 3,…

Для генерации колебаний синусоидальной формы у автогенератора должны выполняться условия баланса фаз и амплитуд на одной и той же частоте.

LC-автогенераторы.

Схема автогенератора с резонансным LC-контуром показана на рис. 5.3, а. В этой схеме используется индуктивная связь обмотки резонансного контура являющегося нагрузкой однокаскадного усилителя по схеме ОЭ, со второй обмоткой включенной в цепь возбуждения усилителя (в цепь базы).

Элементы R1, R2, R3 и предназначены для обеспечения необходимого режима по постоянному току и его термостабилизации. Сопротивления rк и rб учитывают активные потери соответственно в контурной и базовой обмотках.

За счет конденсатора С,реактивное сопротивление которого на частоте генерации незначительно, заземляется один конец базовой обмотки.

Рис. 5.3

Сопротивление контура на резонансной частоте носит чисто активный характер и равно Lк/(rкCк).Поэтому при воздействии на базу сигнала переменного тока с частотой, равной частоте резонанса, напряжение на коллекторе будет сдвинуто по фазе на 180° (как для каскада усиления по схеме ОЭ).

Поскольку базовая и контурная обмотки имеют взаимную индуктивность, переменное напряжение на базовой обмотке Uбэ, а счет тока, проходящего через контурную обмотку Lк, будет равно ± jwMIк,где М – коэффициент взаимоиндукции.

Если выбрать направление намотки катушек таким, что Uбэ = -jwMIк, тo общий фазовый сдвиг в замкнутой цепи усилитель – звено обратной связи будет равен нулю. Это обеспечивает выполнение условия баланса фаз.

При этом частота колебаний LC-автогенератора выражается формулой

(5.8)

RC-автогенераторы.

У LC-автогенераторов в диапазоне низких частот непомерно увеличиваются индуктивность и емкость колебательного контура.

Поэтому в автогенераторах гармонических колебаний низкочастотного диапазона используют частотно-избирательные цепочки из элементов R и С. Такие автогенераторы называют RC-генераторами.

Они имеют меньшие габариты при частотах от долей герц до десятков килогерц.

Чтобы из всего возможного спектра частот RC-автогенератор генерировал лишь одну какую-либо гармоническую составляющую, условия самовозбуждения генератора [формулы (5.4), (5.5)] должны быть выполнены на этой частоте.

Наиболее широкое применение находят RC-автогенераторы, в которых используют последовательно-параллельную, частотно-избирательную RC-цепочку (рис. 5.4, а). Квазирезонансная частота для этой цепочки

(5.9)

и коэффициент передачи напряжения на квазирезонансной частоте

β0 = Uвых/Uвх = 1/(1 + R1/R2 + С2/С1) (5.10)

Так как в реальных схемах обычно R1 = R2 = Rи С1 = С2 = С, то соотношения (5.9) и (5.10) соответственно имеют вид f0 = 1/(2πRC), β0 = 1/3.

Рис. 5.4

Поскольку коэффициент передачи напряжения β0 — величина положительная, сдвиг фазы входного сигнала на квазирезонансной частоте отсутствует (φβ=0).

Таким образом, для выполнения условий самовозбуждения усилительное звено RC-автогенератора должно обеспечивать фазовый сдвиг φk = 2 πn, где n = 0, 1, 2, 3 …, поскольку φβ=0 [см. равенство (5.

5)], и иметь коэффициент усиления, больший трех ((βКи > 1). Тем самым удовлетворяется условие баланса фаз и амплитуд.

Принципиальная схема RC-автогенератора на двухкаскадном усилителе по схеме ОЭ, в цепь положительной обратной связи которого включена последовательно-параллельная RC-цепь,показана на рис. 5.5, а.

Двухкаскадный усилитель обеспечивает общий нулевой фазовый сдвиг (по 180° на каждый каскад).

Благодаря тому, что последовательно-параллельная RC-цепь на квазирезонансной частоте f0 также обеспечивает фазовый сдвиг, равный нулю, условие баланса фаз выполняется именно на этой частоте, чем достигается получение синусоидальной формы кривой генерирующих колебаний.

Рис. 5.5

Так как двухкаскадный усилитель имеет коэффициент усиления, значительно превышающий 3, через цепочку Roc, Rэ1 введена отрицательная обратная связь, охватывающая оба каскада и снижающая коэффициент усиления до критического. Это позволяет о улучшить форму кривой генерируемых колебаний, а также повысить стабильность их частоты.

Дата добавления: 2015-12-11; просмотров: 3670; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/6-18030.html

Устройство и принцип действия генераторов гармонических колебаний

Генераторы гармонических колебаний

Устройство и принцип действия генераторов  Общие сведения.

Электронными генераторами гармонических колебаний называют автоколебательные системы, в которых энер­гия источников питания постоянного тока преобразуется в энергию незатухающих электрических сигналов переменного тока требуемой частоты.

Электрические сигналы, формируемые генератором, должны быть стабильными по частоте и амплитуде, синусоидальными по форме. По принципу действия различают генераторы с самовозбуж­дением (автогенераторы) и с внешним (посторонним) возбуждением.

Автогенераторы используют в качестве возбудителей колебаний требуемых частот, т. е. задающих генераторов. Получаемые от них колебания поступают в последующие каскады с целью усиления мощности или умножения частоты. Генераторы с внешним возбуж­дением являются по существу усилителями и служат для усиления мощности или умножения частоты высокочастотных колебаний.

Автогенератор представляет собой резонансный усилитель (нагрузкой служит резонансный контур) с положительной обратной связью в котором выполнено условие самовозбуж­дения KР=1.

Если это условие выполняется только для одной частоты, генерируемые колебания имеют синусоидальную форму, если для многих частот, — сложную форму.

Обычно это ус­ловие реализуется в генераторах релаксационных (несинусоидаль­ных) колебаний — мультивибраторах, блокннг-генераторах и др.

Принцип действия.

Функциональная схема автогенератора состоит из колебательной системы КС (обычно конту­ра), в которой возбуждаются требуемые незатухающие колебания; источника электрической энергии ИЭ (источника питания), благо­даря которому в контуре поддерживаются незатухающие колеба­ния; усилительного элемента УЭ (транзистора или лампы), с по­мощью которого регулируется подача энергии от источника в кон­тур; элемента обратной связи ЭОС, который осуществляет подачу возбуждающего переменного напряжения из выходной цепи во входную.

По способу осуществления обратной связи различают автоге­нераторы с

  • индуктивной (трансформаторной или автотрансформа­торной)
  • емкостной ОС.

Применяют также схемы двухконтурных генераторов с электронной связью и обратной связью через меж­дуэлектродные емкости.Схемы автогенераторов с индуктивной (трансформаторной) обратной связью.

При включении источ­ников питания в коллекторной (анодной) цепи транзистора (лам­пы) возникает ток коллектора, который заряжает конденсатор колебательного контура.

После заряда конденсатор разряжается на катушку, В результате в контуре LK CK возникают свободные ко­лебания с частотой fо = 1/(2п\/ LKCK), индуктирующие в катушке связи Lc переменное напряжение той же частоты, с которой проис­ходят колебания в контуре.

Это напряжение вызывает пульсацию тока коллектора (анода). Переменная составляющая тока воспол­няет потери энергии в контуре, создавая на нем усиленное тран« зистором переменное напряжение.

Процесс возникновения колебаний в генераторе. В начальный момент (при включении источника пи­тания) свободные колебания в контуре имеют малую амплитуду, поэтому индуктированное этими колебаниями напряжение возбуж­дения на базе транзистора Uб или сетке лампы Uc невелико.

После усиления сигнала усилительным элементом ток в контуре iK(i*) воз­растает, в результате чего увеличивается амплитуда напряжения возбуждения U6(Ue), а следовательно, и амплитуда тока в контуре.

В установившемся режиме рост тока в контуре ограничивается сопротивлением потерь контура а также затуханием, вносимым в контур за счет прохождения тока по обмотке ОС. Незатухающие колебания в контуре автогенератора установятся лишь при выпол­нении фазового (баланс фаз) и амплитудного (баланс амплитуд) условий самовозбуждения генератора.

Фазовое условие сводится к тому, что в схеме генератора долж­на быть установлена положительная ОС между выходной и вход­ной цепями транзистора (лампы). В этом режиме обеспечивается восполнение потерь энергии в контуре.

Фазовое условие самовоз­буждения выполняется, если суммарный сдвиг фаз усилительной цепи К и цепи обратной связи 0 составляет 2лп, где-n=0, 1, 2… Фазовое условие удовлетворяется, если переменное напряжение на входе усилительного элемента изменяется в про-тивофазе с переменным напряжением на« контуре выходной цепи.

Обычно резонансное сопротивление параллельного контура име« ет чисто активный характер. При воздействии»на базу (сетку) сиг­нала с частотой, равной частоте резонанса, напряжение на коллек­торе (аноде) будет сдвинуто по фазе на 180° (как в обычном резиг сторном каскаде усиления).

Напряжение, индуктируемое в обмотке обратной связи Lc за счет тока Iк, проходящего через контурную катушку LK, равно Uр=±jw0MIк, где М — коэффициент взаимоин­дукции между катушками. Правильная фазировка колебаний дости­гается соответствующим включением в схему концов катушки ОС, при котором U$ = — jwоМIк.  В этом случае общий фазовый сдвиг в схеме фк+фр =0, т. е. установится положительная ОС.

Амплитудное условие самовозбуждения схемы состоит в том, что для возникновения автоколебательного режима затухание сиг­нала, вносимое цепью ОС, должно компенсироваться усилителем. Глубина положительной ОС должна быть такой, чтобы полностью восполнялись потери энергии в контуре.

При положительной ОС коэффициент усиления  k$ =K/(1 — pK). Коэффициент передачи цепи ОС, показывающий, какая часть переменного напряжения контура подается на базу (сетку) усили­тельного элемента в установившемся режиме работы генератора.

Учитывая, что усилитель с положительной ОС переходит в ре­жим генерации при условии k$ >1, коэффициент передачи цепи ОС, при котором обеспечивается самовозбуждение, р>1/Kуст. Для транзисторной схемы коэффициент усиления на резонансной часто­те в установившемся режиме где S, Ri, м — статические параметры лампы.

При удовлетворении условий баланса фаз и амплитуд в схеме автогенератора возможно установление колебательного режима.

Режимы возбуждения. Генерация колебаний зависит от выбора параметров контура и усилительного элемента, а также от началь­ного режима работы.

При выборе исходной рабочей точки на пря­молинейной части характеристики получаем мягкий режим самовоз­буждения, при котором достаточно небольшого изменения тока, чтобы развивались колебания.

Если рабочая точка выбрана в области нижнего изгиба харак­теристик (при большом напряжении смещения), то крутизна мо­жет оказаться недостаточной для обеспечения генерации при выбран­ном значении коэффициента взаимоиндукции М.

В этом режиме, называемом режимом жесткого самовозбуждения, возбуждение ге­нератора возможно лишь при большой амплитуде напряжения воз­буждения.

В транзисторной схеме автогенератора для получения мягкого режима самовозбуждения ,на базу транзистора относительно эмиттера подают- начальное напряжение смещения EСм= — ER2 с делителя R1R2. По мере нарасташш амплитуды коле­баний начинает преобладать падение напряжения на резисторе Ra, поэтому в устанавившемся режиме смещение на базе станет поло­жительным: EСм=IэRэ — ЕВ2. При этом генератор переходит в более экономичный жесткий колебательный режим с малыми углами от­сечки коллекторного тока.

В ламповой схеме генератора  мягкое само­возбуждение с последующим переходом от мягкого режима к жест­кому осуществляется автоматически с помощью цепи Rc Cc, вклю­чаемой в цепь сетки.

При этом лампа Л должна работать в режиме сеточных токов. В начальный момент смещение на сетке отсутству­ет, а крутизна велика.

С ростом напряжения возбуждения появля-ется сеточный ток, который обеспечивает заданное смещение

Электропитание автогенераторов. Схемы автогенераторов являются схемами с последовательным питанием. поскольку транзистор (лампа) и колебательный контур LK CK по отношению к источнику £к или Е& включены последовательно и через них проходит постоянная составляющая коллекторного (анод* ного) тока.

В этих схемах приближение руки к контуру LK CK (на­пример, при настройке) влияет на его емкость, а следовательно, и частоту. Кроме того, в ламповой схеме контур относительно корпуса находится под сравнительно высоким напряжением анодного источ­ника, что неудобно при обслуживании.

Однако схема с последова-тельным питанием содержит меньше блокировочных элементов (кон­денсаторов, дросселей).

В схемах автогенераторов с параллельным питанием транзистор (лампа), контур LKCK и источник пи­тания Ек(Еа) включены параллельно. Принцип действия генератора, собранного по этой схеме, в основном аналогичен принципу действия генератора с последовательным питанием.

Разделение переменной и постоянной составляющих коллекторного (анодного) тока дости­гается заградительными дросселями L3 и конденсаторами Ср..

Пере­менная составляющая коллекторного (анодного) тока, для которой дроссель представляет большое, а конденсатор малое сопротивле­ние, в основном проходит через транзистор (лампу) и контур, вос­полняя в нем потери энергии.

Если бы в схеме не было дросселя L3, переменная составляющая тока, замыкаясь через источник, не поступала бы в контур и возникновение колебаний было бы невоз­можно. При отсутствии в схеме конденсатора Ср постоянный ток от источника ЕК(Е&), замыкаясь через дроссель L3 и катушку LK, мог бы заметно возрасти и вызвать перегрузку источника и недо­пустимый нагрев катушек L3 и LK.

Источник: http://audioakustika.ru/generator

Генераторы гармонических колебаний (стр. 1 из 2)

Генераторы гармонических колебаний

Енергодарський інститут державного та муніципального управління імені Р.Г. Хеноха

Класичний приватний університет

«Отримано»

Реєстраційний №

Дата отримання «»2008р.

«Відправлено з зауваженнями»

Реєстраційний №

Дата отримання «»2008р.

«Отримано повторно»

Реєстраційний №

Дата отримання «»2008р.

РЕФЕРАТ

З дисципліни «Основи електротехніки і електроніки»

На тему «Генератори гармонійних коливань»

Виконав (ла) студент (ка)

ІІIкурсу, групи ЗИ — 617

Вільчак Володимир Федорович

м. Енергодар, 2009р.

План

Введение

1. Генераторы гармонических колебаний

2. Генератор LC-типа

3. RC- генератор с последовательно- параллельной RC-цепью

4. Схема генератора RC — типа с фазосдвигающей цепью

Вывод

Список использованной литературы

Введение

Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебательные процесс широко распространены в природе и технике, например качания маятника часов, переменный электрический ток и т.д.

Физическая природа колебаний может быть разной, поэтому различают колебания механические, электромагнитные и другие. Однако различные колебательные процессы описываются одинаковыми характеристиками и одинаковыми уравнениями.

Колебания называются свободными (или собственными), если они совершаются за счет первоначально совершенной энергии при последующем отсутствии внешних воздействий на колебательную систему (систему, совершающую колебания). Простейшим типом колебаний являются гармонические колебания — колебания, при которых колеблющаяся величина изменятся со временем по закону синуса (косинуса).

Генератором гармонических колебаний называют устройство, создающее переменное синусоидальное напряжение при отсутствии входных сигналов. В схемах генераторов всегда используется положительная обратная связь. Различают аналоговые и цифровые генераторы.

Для аналоговых генераторов гармонических колебаний важной проблемой является автоматическая стабилизация амплитуды выходного напряжения. Если в схеме не предусмотрены устройства автоматической стабилизации, устойчивая работа генератора окажется невозможной.

В этом случае после возникновения колебаний амплитуда выходного напряжения начнет постоянно увеличиваться, и это приведет к тому, что активный элемент генератора (например, операционный усилитель) войдет в режим насыщения. В результате напряжение на выходе будет отличаться от гармонического.

Схемы автоматической стабилизации амплитуды достаточно сложны.

1. Генераторы гармонических колебаний

Генераторы гармонических колебаний представляют собой электронные устройства, формирующие на своем выходе периодические гармонические колебания при отсутствии входного сигнала. Генерирование выходного сигнала осуществляется за счет энергии источника питания. Со структурной точки зрения генераторы представляют собой усилители электрических сигналов, охваченные ПОС.

Внешний входной сигнал отсутствует. На входе усилителя действует только выходной сигнал ОС UOC. А на входе ОС действует UВХОС=UВЫХ. Поэтому коэффициент усиления такой схемы

Условием, обеспечивающим наличие сигнала на выходе генератора при отсутствии внешнего входного сигнала является К→ ∞,то есть

При выполнении этого условия любой усилитель, охваченный ПОС становится генератором, на выходе его появляются колебания, независимые от входного сигнала (автоколебания). Явление возникновения автоколебаний в усилителе называется самовозбуждением.

Условие возникновения автоколебаний можно разделить на две составляющие:

1) Условие баланса амплитуд: К∙β=1. Физический смысл: результирующее усиление в контуре, состоящем из последовательного соединения усилителя и цепи ОС должно быть равно единице.

Если цепь ОС ослабляет сигнал, то усилитель должен на 100% компенсировать это ослабление.

То есть если в любом месте разорвать контур ПОС и на вход подать сигнал от внешнего источника, то пройдя по контуру К∙βс выхода разрыва цепи ОС вернется сигнал точно такой же амплитуды, что был подан на вход разрыва.

2) Условие баланса фаз: arg(K·β)=0. Физический смысл: результирующий фазовый сдвиг, вносимый усилителем и цепью ОС должен быть равен нулю (или кратен 2π). То есть при подаче сигнала на разрыв, вернувшийся сигнал будет иметь точно такую же фазу. При выполнении этого условия ОС будет положительна.

Для существования автоколебаний необходимо одновременное выполнение этих условий. Если эти условия выполняются не для одной частоты, а для целого спектра частот, то генерируемый выходной сигнал будет сложным (не гармоническим).

Для обеспечения синусоидальности выходного сигнала генератор должен генерировать сигнал только одной единственной частоты. Для этого необходимо, чтобы условия возникновения автоколебаний выполнялись для единственной частоты, которая и будет генерироваться. Для этого делают К или βчастотно-зависимыми.

Как правило βимеет максимум β0на некоторой частоте ω0. Поэтому на ω0и коэффициент усиления будет иметь максимум К0. Величины К0 и β0обеспечивают такими, чтобы они удовлетворяли условиям возникновения автоколебаний.

Тогда при отклонении частоты от ω0 и условия возникновения автоколебаний выполнятся не будут, что приведет к затуханию колебаний этой частоты и на выходе генератора будут только гармонические колебания частоты ω0.

В зависимости от того, каким способом в генераторе обеспечивается условие баланса фаз и амплитуд, различают генераторы:

1) RC-типа;

2) LC-типа.

2. Генератор LC-типа

Такой генератор строят на основе усилительного каскада на транзисторе, включая в его коллекторную цепь колебательный LC-контур. Для создания ПОС используется трансформаторная связь между обмотками W1

(имеющей индуктивность L) и W2 (рис. 2.1).

Рис. 2.1 — Генератор LC-типа

Напряжение U2является напряжением ОС. Оно связано с напряжением первичной обмотки W1коэффициентом трансформации:

Коэффициент трансформации в данном случае является коэффициентом передачи ОС, показывая какая часть напряжения

передается на вход. Для выполнения баланса амплитуды на частоте ω0должно выполнятся равенство

Из этого условия рассчитывается необходимое число витков вторичной обмотки, чем обеспечивается условие баланса амплитуд. Для обеспечения баланса фаз необходимо обеспечить соответствующее включение начал и концов обмоток, чтобы ОС была положительной.

Емкость С1выбирают такой, чтобы ее сопротивление на частоте генерации было незначительным по сравнению с R2. Это исключает влияние сопротивления делителя на ток во входной цепи транзистора, создаваемый напряжением ОС. Назначение RЭи СЭ такое же, как в обычном усилительном каскаде.

LC-генераторы, также как и LC-избирательные усилители применяют в области высоких частот, когда требуются небольшие величины L и имеется возможность обеспечить высокую добротность LC-контура.

А на низких и инфранизких частотах, когда построение LC-генератора затруднительно, используют RС цепи тех же типов, что и для избирательных усилителей.

3. RC- генератор с последовательно- параллельной RC-цепью

Рис. 3.1 — Принципиальная схема генератора с последовательно-параллельной RC-цепью на ОУ

Рис. 3.2 — Частотная характеристика RC-цепи

Так как последовательно-параллельная

цепь имеет на частоте настройки ω0 коэффициент передачи β0=1/RC, то условие баланса амплитуд Кн∙β0=1запишется как

откуда R2=2R1и К=3.

Регулирование частоты в этом генераторе осуществляется одновременным изменением сопротивлений Rили емкостей С. Для стабилизации амплитуды генерируемых колебаний в качестве сопротивления R1 применяют терморезистор с положительным температурным коэффициентом.

Если при этом амплитуда выходного сигнала возрастет выше установившегося уровня, то возросший сигнал на выходе генератора приведет к увеличению напряжения и тока (то есть мощности) на R1.

При нагреве R1 его сопротивление возрастет и коэффициент усиления по неинвертирующему входу уменьшится (то есть уменьшится наклон амплитудной характеристики усилителя по неинвертирующему входу). Это приведет к уменьшению амплитуды автоколебаний на выходе. Если же амплитуда автоколебаний уменьшится, то мощность выделяемая на R1 уменьшится.

Его температура также уменьшится, что вызовет уменьшение его температуры. Коэффициент усиления возрастет, увеличится наклон характеристики, точка пересечения характеристик сместится вверх и обеспечит большую амплитуду. В качестве такого терморезистора можно использовать маломощную лампу накаливания.

Источник: https://mirznanii.com/a/119849/generatory-garmonicheskikh-kolebaniy

Booksm
Добавить комментарий