Гауссова система единиц (СГС)

Системы измерения СИ, СГС, МКС, МТС, МКГСС, СГСЭ, СГСМ, ES, EM, e.s., e.m., CGS, MKS units

Гауссова система единиц (СГС)

  • Система измерения СИ была принята XI Генеральной конференцией по мерам и весам, некоторые последующие конференции внесли в СИ ряд изменений.
  • Система СИ определяет семь основных и производные единицы измерения, а также набор приставок. Установлены стандартные сокращённые обозначения для единиц измерения и правила записи производных единиц.
  • В России действует ГОСТ 8.417-2002, предписывающий обязательное использование СИ. В нем перечислены единицы измерения, приведены их русские и международные названия и установлены правила их применения. По этим правилам в международных документах и на шкалах приборов допускается использовать только международные обозначения. Во внутренних документах и публикациях можно использовать либо международные либо русские обозначения (но не те и другие одновременно).
  • Основные единицы: килограмм, метр, секунда, ампер, кельвин, моль и кандела. В рамках СИ считается, что эти единицы имеют независимую размерность, т. е. ни одна из основных единиц не может быть получена из других.
  • Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в Системе СИ присвоены собственные названия.
  • Приставки можно использовать перед названиями единиц измерения; они означают, что единицу измерения нужно умножить или разделить на определенное целое число, степень числа 10. Например приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.

История

  • Система СИ основана на метрической системе мер, которая была создана французскими учеными и впервые была широко внедрена после Великой Французской революции. До введения метрической системы, единицы измерения выбирались случайно и независимо друг от друга. Поэтому пересчет из одной единицы измерения в другую был сложным. К тому же в разных местах применялись разные единицы измерения, иногда с одинаковыми названиями. Метрическая система должна была стать удобной и единой системой мер и весов.
  • В 1799 г. были утверждены два эталона — для единицы измерения длины ( метр) и для единицы измерения веса ( килограмм).
  • В 1874 г. была введена система СГС, основанная на трех единицах измерения — сантиметр, грамм и секунда. Были также введены десятичные приставки от микро до мега.
  • В 1889 г. 1-ая Генеральная конференция по мерам и весам приняла систему мер, сходную с СГС, но основанную на метре, килограмме и секунде, т. к. эти единицы были признаны более удобными для практического использования.
  • В последующем были введены базовые единицы для измерения физических величин в области электричества и оптики.
  • В 1960 г. XI Генеральная конференция по мерам и весам приняла стандарт, который впервые получил название «Международная система единиц (СИ)».
  • В 1971 г. IV Генеральная конференция по мерам и весам внесла изменения в СИ, добавив, в частности, единицу измерения количества вещества ( моль).
  • В настоящее время СИ принята в качестве законной системы единиц измерения большинством стран мира и почти всегда используется в области науки (даже в тех странах, которые не приняли СИ).

Исторические системы мер и единиц.

До введения международной системы единиц СИ применялись следующие системы единиц:

Система Гаусса.

Впервые понятие системы единиц физических величин было введено немецким математиком К. Гауссом (1832). Идея Гаусса состояла в следующем. Сначала выбирается несколько величин, не зависящих друг от друга. Величины эти называют основными, а их единицы – основными единицами системы единиц.

Основные величины выбираются так, чтобы, пользуясь формулами, выражающими связь между физическими величинами, можно было образовать единицы других величин. Единицы, полученные с помощью формул и выраженные через основные единицы, Гаусс назвал производными единицами.

Пользуясь своей идеей, Гаусс построил систему единиц магнитных величин. Основными единицами этой системы Гаусса были выбраны: миллиметр – единица длины, секунда – единица времени. Идеи Гаусса оказались весьма плодотворными.

Все последующие системы единиц строились на предложенных им принципах LMT = Length Mass Time = Длина Масса Время.

    • Система СГС построена на основе системы величин LMT. Основные единицы системы СГС: сантиметр – единица длины, грамм – единица массы, секунда – единица времени. В системе СГС с использованием указанных трех основных единиц установлены производные единицы механических и акустических величин. С использованием единицы термодинамической температуры – кельвина – и единицы силы света – канделы – система СГС распространяется на область тепловых и оптических величин.
    • Основные единицы системы МКС: метр – единица длины, килограмм – единица массы, секунда – единица времени. Так же как и система СГС, система МКС построена на основе системы величин LMT. Эта система единиц была предложена в 1901 г. итальянским инженером Джорджи и содержала кроме основных производные единицы механических и акустических величин. Путем добавления в качестве основных единицы термодинамической температуры – кельвина – и силы света – канделы – систему МКС можно было распространить на область тепловых и световых величин.
    • Система единиц МТС (MTS units system) построена на основе системы величин LMT. Основные единицы системы: метр – единица длины, тонна – единица массы, секунда – единица времени. Система МТС была разработана во Франции и узаконена ее правительством в 1919 г. Система МТС была принята и в СССР и в соответствии с государственным стандартом применялась более 20 лет (1933 – 1955). Единица массы этой системы – тонна – по своему размеру оказалась удобной в ряде отраслей производства, имеющих дело со сравнительно большими массами. Система МТС имела и ряд других преимуществ. Во-первых, числовые значения плотности вещества при выражении ее в системе МТС совпадали с числовыми значениями этой величины при выражении ее в системе СГС (например в системе СГС плотность железа 7,8 г/см3, в системе МТС – 7,8 т/м3). Во-вторых, единица работы системы МТС – килоджоуль – имела простое соотношение с единицей работы системы МКС (1 кДж = 1000 Дж). Но размеры единиц подавляющего большинства производных величин в этой системе оказались неудобными на практике. В СССР система МТС была отменена в 1955 г.
    • Система единиц МКГСС построена на основе системы величин LFT. Основные единицы ее: метр – единица длины, килограмм-сила – единица силы, секунда – единица времени. Килограмм-сила – сила, равная весу тела массой 1 кг при нормальном ускорении свободного падения g0 = 9,80665 м/с2. Эта единица силы, а также некоторые производные единицы системы МКГСС оказались удобными при применении их в технике. Поэтому система получила широкое распространение в механике, теплотехнике и ряде других отраслей производства. Основной недостаток системы МКГСС – весьма ограниченные ее возможности применения в физике. Существенным недостатком системы МКГСС является также то, что единица массы в этой системе не имеет простого десятичного соотношения с единицами массы других систем. С введением Международной системы единиц система МКГСС утратила свое значение.
  • Системы единиц электромагнитных величин. Известны два способа построения систем электрических и магнитных величин на основе системы СГС: на трех основных единицах (сантиметр, грамм, секунда) и на четырех основных единицах (сантиметр, грамм, секунда и одна единица электрической или магнитной величины). Первым способом, то есть с использованием трех основных единиц на основе системы СГС, получены три системы единиц: электростатическая система единиц (система СГСЭ), электромагнитная система единиц (система СГСМ), симметричная система единиц (система СГС). Рассмотрим эти системы.
    • Электростатическая система единиц (система СГСЭ).При построении этой системы первой производной электрической единицей вводится единица электрического заряда с использованием закона Кулона в качестве определяющего уравнения. При этом абсолютная диэлектрическая проницаемость рассматривается безразмерной электрической величиной. Как следствие этого, в некоторых уравнениях, связывающих электромагнитные величины, появляется в явном виде корень квадратный из скорости света в вакууме.
    • Электромагнитная система единиц (система СГСМ).При построении этой системы первой производной электрической единицей вводится единица силы тока с использованием закона Ампера в качестве определяющего уравнения. При этом абсолютная магнитная проницаемость рассматривается безразмерной электрической величиной. В связи с этим, в некоторых уравнениях, связывающих электромагнитные величины, появляется в явном виде корень квадратный из скорости света в вакууме.
    • Симметричная система единиц (система СГС). Эта система является совокупностью систем СГСЭ и СГСМ. В системе СГС в качестве единиц электрических величин используются единицы системы СГСЭ, а в качестве единиц магнитных величин – единицы системы СГСМ. В результате комбинации двух систем в некоторых уравнениях, связывающих электрические и магнитные величины, появляется в явном виде корень квадратный из скорости света в вакууме.

Источник: https://dpva.ru/Guide/GuideUnitsAlphabets/GuideUnitsAlphabets/SiSGS/

Сгс система единиц

Гауссова система единиц (СГС)

Сгс система единиц, система единиц физических величин, в которой приняты три основные единицы: длины — сантиметр, массы — грамм и времени — секунда.

Система с основными единицами длины, массы и времени была предложена образованным в 1861 Комитетом по электрическим эталонам Британской ассоциации для развития наук, в который входили выдающиеся физики того времени [У. Томсон (Кельвин), Дж. Максвелл, Ч. Уитстон и др.

], в качестве системы единиц, охватывающей механику и электродинамику. Через 10 лет ассоциация образовала новый комитет, который и выбрал окончательно в качестве основных единиц сантиметр, грамм и секунду. Первый Международный конгресс электриков (Париж, 1881) также принял СГС с. е.

, и с тех пор она широко применяется в научных исследованиях. С введением Международной системы единиц (СИ) в научных работах по физике и астрономии наряду с единицами СИ допускается использовать единицы СГС с. е.

  К важнейшим производным единицам СГС с. е. в области механических измерений относятся: единица скорости — см/сек, ускорения — см/сек2, силы — дина (дин), давления — дин/см2, работы и энергии — эрг, мощности — эрг/сек, динамической вязкости — пуаз (пз), кинематической вязкости — стоке (cm).

Для электродинамики первоначально были приняты две СГС с. е.: электромагнитная (СГСМ) и электростатическая (СГСЭ). В основу построения этих систем был положен Кулона закон — для магнитных зарядов (СГСМ) и электрических зарядов (СГСЭ).

В СГСМ магнитная проницаемость вакуума m0 не имеет размерности и равна 1, диэлектрическая проницаемость вакуума e0 = 1/с2 сек2/см2, где с = (2,99792458 ± 0,000000012)×1010 см/сек — скорость света.

Единицей СГСМ магнитного потока является максвелл (мкс, Мх), магнитной индукции — гаусс (гс, Gs), напряжённости магнитного поля — эрстед (э, Ое), магнитодвижущей силы — гильберт (гб, Gb). Электрическими единицам в этой системе собственных наименований не присвоено.

В СГСЭ e0 = 1, m0 = 1/с2 сек2/см2 Электрические единицы СГСЭ собственных наименований не имеют; размер их, как правило, неудобен для измерений; применяют их главным образом в теоретических работах.

  Со 2-й половины 20 в. наибольшее распространение получила т. н. симметричная СГС с. е. (её называют также смешанной или Гаусса системой единиц). В симметрической СГС с. е. m0 = 1 и e0 = 1.

Магнитные единицы этой системы равны единицам системы СГСМ, электрические — единицам системы СГСЭ. Соотношения важнейших единиц трёх указанных выше СГС с. е. с соответствующими единицами СИ см. в табл.

ВеличинаЕдиница системы*
СИСГСМСГСЭСГС симметричная
Сила1 н10-5 н10-5 н10-5 н
Работа, энергия1 дж10-7 дж10-7 дж10-7 дж
Динамическая вязкость1 н×сек/м20,1 н× сек/м20,1 н× сек/м20,1 н× сек/м2
Кинематическая вязкость1 м2/сек10-4 м2/сек10-4 м2/сек10-4 м2/сек
Сила тока1 а10 а10/са10/са
Электрический заряд1 к10 к10/ск10/ск
Электрическое напряжение1 в10-8 в10-8×св10-8×св
Электрическое сопротивление1 ом10-9 ом10-9×с2ом10-9×с2ом
Электрическая ёмкость1 Ф109 ф109/с2ф109/с2ф
Напряжённость магнитного поля1 а/м103/(4p) а/м103/(4p×с) а/м103/(4p) а/м
Магнитная индукция1 тл10-4 тл10-4×стл10-4 тл
Магнитный поток1 вб10-8 вб10-8×свб10-8 вб

В приведённых соотношениях с — числовое значение скорости света в см/сек.

  Лит.: Бурдун Г. Д., Справочник по Международной системе единиц, М., 1971.

  К. П. Широков.

Оглавление

Источник: https://www.booksite.ru/fulltext/1/001/008/100/440.htm

Системы единиц, которые применялись до введения международной системы. Система Гаусса

Гауссова система единиц (СГС)

До введения международной системы единиц СИ применялись следующие системы единиц.

Метрическая система мер – совокупность единиц физических величин, в основу которой положены две единицы: метр – единица длины, килограмм – единица массы.

Отличительной особенностью Метрической системы мер явился принцип десятичных соотношений в отношении кратных и дольных единиц.

Метрическая система мер, введенная первоначально во Франции, получила во второй половине XIX в. международное признание.

Система СГС

Система СГС построена на основе системы величин LMT. Основные единицы системы СГС: сантиметр – единица длины, грамм – единица массы, секунда – единица времени.

В системе СГС с использованием указанных трех основных единиц установлены производные единицы механических и акустических величин.

С использованием единицы термодинамической температуры – кельвина – и единицы силы света – канделы – система СГС распространяется на область тепловых и оптических величин.

Система МКС

Основные единицы системы МКС: метр – единица длины, килограмм – единица массы, секунда – единица времени. Так же как и система СГС, система МКС построена на основе системы величин LMT. Эта система единиц была предложена в 1901 г.

итальянским инженером Джорджи и содержала кроме основных производные единицы механических и акустических величин.

Путем добавления в качестве основных единицы термодинамической температуры – кельвина – и силы света – канделы – систему МКС можно было распространить на область тепловых и световых величин.

Система МТС

Система единиц МТС построена на основе системы величин LMT. Основные единицы системы: метр – единица длины, тонна – единица массы, секунда – единица времени. Система МТС была разработана во Франции и узаконена ее правительством в 1919 г.

Система МТС была принята и в СССР и в соответствии с государственным стандартом применялась более 20 лет (1933 – 1955). Единица массы этой системы – тонна – по своему размеру оказалась удобной в ряде отраслей производства, имеющих дело со сравнительно большими массами. Система МТС имела и ряд других преимуществ.

Во-первых, числовые значения плотности вещества при выражении ее в системе МТС совпадали с числовыми значениями этой величины при выражении ее в системе СГС (например в системе СГС плотность железа 7,8 г/см3, в системе МТС – 7,8 т/м3). Во-вторых, единица работы системы МТС – килоджоуль – имела простое соотношение с единицей работы системы МКС (1 кДж = 1000 Дж).

Но размеры единиц подавляющего большинства производных величин в этой системе оказались неудобными на практике. В СССР система МТС была отменена в 1955 г.

Система МКГСС

Система единиц МКГСС построена на основе системы величин LFT. Основные единицы ее: метр – единица длины, килограмм-сила – единица силы, секунда – единица времени.

Килограмм-сила – сила, равная весу тела массой 1 кг при нормальном ускорении свободного падения g0 = 9,80665 м/с2. Эта единица силы, а также некоторые производные единицы системы МКГСС оказались удобными при применении их в технике.

Поэтому система получила широкое распространение в механике, теплотехнике и ряде других отраслей производства. Основной недостаток системы МКГСС – весьма ограниченные ее возможности применения в физике.

Существенным недостатком системы МКГСС является также то, что единица массы в этой системе не имеет простого десятичного соотношения с единицами массы других систем. С введением Международной системы единиц система МКГСС утратила свое значение.

Системы единиц электромагнитных величин

Системы единиц электромагнитных величин.

Известны два способа построения систем электрических и магнитных величин на основе системы СГС: на трех основных единицах (сантиметр, грамм, секунда) и на четырех основных единицах (сантиметр, грамм, секунда и одна единица электрической или магнитной величины).

Первым способом, то есть с использованием трех основных единиц на основе системы СГС, получены три системы единиц: электростатическая система единиц (система СГСЭ), электромагнитная система единиц (система СГСМ), симметричная система единиц (система СГС). Рассмотрим эти системы.

Система СГСЭ

Электростатическая система единиц (система СГСЭ). При построении этой системы первой производной электрической единицей вводится единица электрического заряда с использованием закона Кулона в качестве определяющего уравнения.

При этом абсолютная диэлектрическая проницаемость рассматривается безразмерной электрической величиной.

Как следствие этого, в некоторых уравнениях, связывающих электромагнитные величины, появляется в явном виде корень квадратный из скорости света в вакууме.

Система СГСМ

Электромагнитная система единиц (система СГСМ). При построении этой системы первой производной электрической единицей вводится единица силы тока с использованием закона Ампера в качестве определяющего уравнения.

При этом абсолютная магнитная проницаемость рассматривается безразмерной электрической величиной.

В связи с этим, в некоторых уравнениях, связывающих электромагнитные величины, появляется в явном виде корень квадратный из скорости света в вакууме.

Система единиц СИ

Гауссова система единиц (СГС)

В таблице даны наименования, условные обозначения и размерности наиболее употребительных единиц в системе СИ. Для перехода к другим системам – СГСЭ и СГСМ – в последних столбцах приведены соотношения между единицами этих систем и соответствующими единицами системы СИ.

Для механических величин системы СГСЭ и СГСМ полностью совпадают, основными единицами здесь являются сантиметр, грамм и секунда.

Различие в системах СГС имеет место для электрических величин. Это обусловлено тем, что в качестве четвертой основной единицы в СГСЭ принята электрическая проницаемость пустоты (ε0=1), а в СГСМ – магнитная проницаемость пустоты (μ0=1).

В системе Гаусса основными единицами являются сантиметр, грамм и секунда, ε0=1 и μ0=1 (для вакуума). В этой системе электрические величины измеряются в СГСЭ, магнитные – в СГСМ.

ВеличинаНаименованиеРазмерностьОбозн.Содержит единицсистем СГС
СГСЭСГСМ
Основные единицы
Длинаметрмм102cм
Массакилограммкгкг103г
Времясекундасексек1сек
Сила токаамперАА3×10910-1
ТемператураКельвинКК
градус Цельсия°C°C
Сила светаканделакдкд
Механические единицы
 Количествоэлектричествакулон Кл  3×10910-1 
 Напряжение, ЭДСвольт В  108
Напряженностьэлектрического полявольт на метр108
 Электроемкость фарада Ф9×1011см  10-9
ЭлектрическоесопротивлениеомОм109
Удельноесопротивлениеом-метр1011
Диэлектрическаяпроницаемость фарада на метр 
    Магнитные единицы  
 Напряженностьмагнитного поляампер на метр 
 Магнитнаяиндукция тесла Тл104Гс 
 Магнитный потоквебер Вб  108Мкс
ИндуктивностьгенриГн108см
Магнитнаяпроницаемостьгенри на метр
Оптические единицы
 Телесный угол стерадиан стерстер — — 
 Световой поток люмен лм— — 
 Яркостьнит нт — 
 Освещенность люкслк 

Некоторые определения

Сила электрического тока — сила неизменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого поперечного сечения, расположенным на расстоянии 1м один от другого в вакууме, вызвал бы между этими проводниками силу, равную 2×10-7Н на каждый метр длины.

Кельвин — единица измерения температуры, равная 1/273 части интервала от абсолютного нуля температур до температуры таяния льда.

Кандела (свеча) — сила света, испускаемого с площади 1/600000м2 сечения полного излучателя, в перпендикулярном этому сечению направлении, при температуре излучателя, равной температуре затвердевания платины при давлении 1011325Па.
Ньютон — сила, которая телу массой 1кг сообщает ускорение 1м/с2 в направление ее действия.

Паскаль — давление, вызываемое силой в 1Н, равномерно распределенной по поверхности площадью 1м2.
Джоуль — работа силы 1Н при перемещении ею тела на расстоянии 1м в направлении ее действия.
Ватт — мощность, при которой за 1сек совершается работа, равная 1Дж.

Кулон — количество электричества, проходящее через поперечное сечение проводника в течение 1сек при токе силой 1А.
Вольт — напряжение на участке электрической цепи с постоянным током силой 1А, в котором затрачивается мощность 1Вт.

Вольт на метр — напряженность однородного электрического поля, при которой между точками, находящимися на расстоянии 1м вдоль линии напряженности поля, создается разность потенциалов 1В.
Ом — сопротивление проводника, между концами которого при силе тока 1А возникает напряжение 1В.

Ом-метр — электрическое сопротивление проводника, при котором цилиндрический прямолинейный проводник площадью сечения 1м2 и длиной 1м имеет сопротивление 1Ом.
Фарада — емкость конденсатора, между обкладками которого при заряде 1Кл возникает напряжение 1В.

Ампер на метр — напряженность магнитного поля в центре длинного соленоида с n витками на каждый метр длины, по которым проходит ток силой А/n.
Вебер — магнитный поток, при убывании которого до нуля в контуре, сцепленном с этим потоком, сопротивлением 1Ом проходит количество электричества 1Кл.

Генри — индуктивность контура, с которым при силе постоянного тока в нем 1А сцепляется магнитный поток 1Вб.
Тесла — магнитная индукция, при которой магнитный поток сквозь поперечное сечение площадью 1м2 равен 1Вб.
Генри на метр — абсолютная магнитная проницаемость среды, в которой при напряженности магнитного поля 1А/м создается магнитная индукция 1Гн.
Стерадиан — телесный угол, вершина которого расположена в центре сферы и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы.
Люмен — произведение силы света источника на телесный угол, в который посылается световой поток.

Некоторые внесистемные единицы

ВеличинаЕдиница измеренияЗначение вединицах СИ
наименованиеобозначение
Силакилограмм-сила стенсн10Н
Давление имеханическоенапряжениетехническая атмосфераат98066,5Па
килограмм-сила наквадратный сантиметркгс/см2
физическая атмосфераатм101325Па
миллиметр водяного столбамм вод. ст.9,80665Па
миллиметр ртутного столбамм рт. ст.133,322Па
Работа и энергиякилограмм-сила-метркгс×м9,80665Дж
киловатт-часкВт×ч3,6×106Дж
Мощностькилограмм-сила-метрв секундукгс×м/с9,80665Вт
лошадиная силал.с.735,499Вт

Интересный факт. Понятие лошадиная сила ввел отец известного ученого-физика Ватта. Ватт-отец был инженером-конструктором паровых машин, и ему было жизненно необходимо убедить владельцев шахт покупать его машины вместо тягловых лошадей.

Чтобы хозяева шахт могли посчитать выгоду, Ватт придумал термин лошадиная сила для определения мощности паровых машин. Одна л.с. по Ватту — это 500 фунтов груза, которые лошадь могла тянуть весь рабочий день.

Так что одна лошадиная сила — это способность тянуть телегу с 227кг груза в течении 12 часового рабочего дня. Паровые машины, продаваемые Ваттом, имели всего несколько лошадиных сил.

Приставки и множители для образования десятичных кратных и дольных единиц 

ПриставкаОбозначениеМножитель, на которыйумножаются единицысистемы СИ
отечественноемеждународное
Мега М  М106
Кило к  k103
Гекто г h102
Дека да  da10
Деци д d 10-1
Санти с c 10-2
Милли м m  10-3 
Микро мк µ  10-6
Нано н n  10-9 
Пико п p     10-12 

Источник: http://nemz.ru/sistema_edinic_si

Гауссова система единиц (СГС)

Гауссова система единиц (СГС)

Гауссова система единиц — это система единиц, которая широко применялась до введения Международной системы единиц (СИ).

Система СГС считается строго научной системой единиц. В этой системе в механике основными единицами являются:

  • длина в сантиметрах (см);
  • масса в граммах (г);
  • время в секундах (с).

Разработана система Гаусса была на основе законов Ньютона.

В ином положении оказалась электродинамика, основные положения которой (уравнения Максвелла), были предложены и признаны в конце XIX века. До этого момента уже были широко распространены такие единицы измерения как:

и их производные, которые не были связаны с единицами измерения принятыми в механике. Разумным было бы введение единой системы единиц для механических и электромагнитных физических величин.

В этом вопросе физика и электротехника избрали разные пути. В физике не стали вводить новые основные величины, а стали рассматривать электрические и магнитные величины, как производные от механических. Устроенные подобным образом системы единиц называют абсолютными, коей и является система СГС.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Электротехника же, сохранила механические величины, но не стала приносить в жертву используемые на практике единицы, такие как вольт, ампер, ом и прочие. Что существенно ухудшило систему единиц.

Абсолютная электростатическая система единиц

Любая система единиц состоит из небольшого количества основных единиц, которые выбирают независимо друг от друга, и строящихся на их основе, производных единиц. Производные единицы получают при помощи соотношений, отражающие физические законы, которые связывают рассматриваемую величину с другими величинами, единицы которых уже известны.

Определение 1

Соотношение, используемое для установления производной единицы, называют определяющим соотношением для данной единицы.

Основные механические величины системы Гаусса уже обозначены (см, г, с). Единицей силы в СГС, например, является дина:

$1\,дин=\frac{г\bullet см}{с{2}}$

В абсолютной электростатической системе единиц (СГСЭ) кроме основных единиц механики добавляется абсолютная электростатическая единица заряда.

Определение 2

Абсолютная электростатическая единица заряда — это заряд, действующий на такой же заряд в вакууме, находящийся на расстоянии 1 см, с силой 1 дин.

Если заряды выразить в абсолютных электростатических единицах, сила будет в динах, расстояние в сантиметрах, закон Кулона в СГСЭ имеет вид:

$F=\frac{q_{1}q_{2}}{r{2}}\left( 1 \right)$.

Принимая основными единицами в рассматриваемой системе сантиметр, грамм, секунду и абсолютную единицу заряда (обозначение — $СГСЭ_q$), все остальные единицы в электродинамике можно определить. Данная система единиц названа абсолютной электростатической (обозначается СГСЭ).

Так, в системе СГСЭ единица заряда является производной единицей. Закон Кулона при этом – определяющее соотношение.

CГСЭ$_{q}=1 см\bullet \sqrt {дин}$. (2)

Абсолютная электромагнитная система единиц

В абсолютной электромагнитной системе СГС закон Био-Савара Лапласа для элементарного проводника с током имеет вид:

$d\vec{B}=\frac{I\left[ d\vec{l}\vec{r} \right]}{r{3}}\left( 3 \right)$.

Если воспользоваться системой СГС, добавить к ней силу тока, которую, считать производной (называется она абсолютной электромагнитной единицей силы тока), то получится система СГСМ. Абсолютную электромагнитную единицу силы тока обозначают $СГСМ_i.$

$1 СГСМ_i=1\sqrt{дин}.$

Единица силы тока в СГСМ отличается от единицы силы тока в СГСЭ. Принимая во внимание, что единица заряда в СГСЭ определена в (2), то единица силы тока в ней:

$1СГСЭ_{i}=1\sqrt {дин} \bullet \frac{см}{c}$

Если $ I_э$ – сила тока в системе $ СГСЭ, I_м$ – сила тока в системе СГСМ, то

$I_{м}=\frac{1}{c}I_{э}\left( 4 \right)$,

где $c$ – некоторая размерная константа (электродинамическая постоянная). Ее размерность аналогична размерности скорости. Эмпирически доказано, что $c=3∙10{10}$ см/с – скорость света в вакууме.

Используя закон магнитного взаимодействия токов, строят абсолютную электромагнитную систему. В данной системе механические единицы без изменения (сантиметр, грамм, секунда), но основой определения электрических и магнитных единиц является электромагнитная единица силы тока.

Абсолютная электростатическая система и абсолютная электромагнитная система — это две разные системы, но в принципе, можно использовать только одну из них и неважно какую, поскольку все магнитные величины можно выразить в единицах электростатических и наоборот.

Система Гаусса – комбинация СГСЭ и СГСМ

Следует отметить, что в литературе по физике системы СГСЭ и СГСМ обычно не используют, а пользуются абсолютной симметричной системой электрических и магнитных единиц, или иначе, системой единиц Гаусса. Она строится на основных единицах: сантиметре, грамме, секунде, но является сочетанием систем СГСЭ и СГСМ.

Принцип построения системы Гаусса указан в работах Гаусса и Вебера. В этой системе единицы всех электрических величин:

  • заряда,
  • напряженности электрического поля,
  • разности потенциалов,
  • электрического смещения,
  • силы тока,
  • сопротивления,
  • проводимости,
  • ЭДС

совпадают с единицами системы СГСЭ. Диэлектрическая проницаемость вещества является безразмерной величиной.

Единицы всех магнитных величин:

  • напряженности магнитного поля,
  • магнитной индукции,
  • магнитного потока,
  • индуктивности,
  • напряжение магнитного поля,
  • «магнитных зарядов»

берутся из системы СГСМ. Магнитная проницаемость веществ безразмерна. В законах магнитного взаимодействия силу тока измеряют в единицах СГСМ. При переходе к системе единиц Гаусса во всех законах, относящихся к магнитному полю, возникает электродинамическая постоянная $c$, обладающая размерностью.

В системе Гаусса закон Кулона имеет вид такой же, как в СГСЭ:

$\vec{F}=\frac{q_{1}q_{1}}{\varepsilon r{3}}\vec{r}\left( 5 \right)$.

Магнитное взаимодействие в системе Гаусса описывают законы:

  • $d\vec{F}=\frac{I}{c}\left[ d\vec{l}\vec{B} \right]$– сила, которая действует на элемент тока в магнитном поле.
  • $d\vec{B}=\mu d\vec{H}=\mu \frac{I}{c}\frac{\left[ d\vec{l}\vec{r} \right]}{r{3}}\quad $ — индукция поля, создаваемого элементарным током.
  • $ Ɛ=-\frac{1}{c}\frac{dФ}{dt}$ – закон электромагнитной индукции, где Ɛ измеряется в единицах СГСЭ, а поток в единицах СГСМ.

Связь Международной системы единиц и Гауссовой системы

Для перевода электродинамических формул из системы Гаусса в систему СИ и обратно каждой физической величине ставят в соответствие так называемый «переводной» коэффициент. После замены каждой величины аналогичной, умноженной на такой коэффициент, уравнения системы СГС переходят в равенства системы СИ.

Задача поиска таких коэффициентов не является однозначной. Допустим, что найден один набор коэффициентов. Умножим все их на некоторую постоянную величину, получим другой набор коэффициентов, который может быть использован для необходимого преобразования.

Уравнения механики в системе СИ и системе СГС записываются одинаково, и нет необходимости во введении переводных коэффициентов для механических величин. Коэффициенты требуются для электромагнитных величин. Умножение любой величины на произвольную механическую величину не изменяет переводной коэффициент.

Например, напряженности электрического поля $\vec{E}$ и потенциалу $\phi$ ставят в соответствие один и тот же переводной коэффициент, поскольку эти величины связывает уравнение:

$d\vec{E}=-grad\, \varphi \left( 6 \right)$,

где поле $\vec{E}$ получают из φ делением на длину, которая является механической величиной.

Одинаковые коэффициенты имеют заряд $q$ и его плотность, сила тока $I$ и плотность тока $j$, и так далее.

Скорость света $c$ в систему СИ не входит. Ее заменяют на $\frac{1}{\sqrt {\varepsilon_{0}\mu_{0}} }$, где $\varepsilon_{0}$ – электрическая постоянная; $\mu_0$ – магнитная постоянная. Электрическая и магнитная проницаемости одинаковы в системах СИ и СГС, они не преобразуются.

Коэффициенты обратного преобразования из системы СИ к системе СГС равны обратным значениям коэффициентов, используемых для прямого преобразования.

Источник: https://spravochnick.ru/fizika/gaussova_sistema_edinic_sgs/

Booksm
Добавить комментарий