Формула силы притяжения

Закон всемирного тяготения. Движение тел под действием силы тяжести

Формула силы притяжения

Исходя из трактовки второго закона Ньютона, можно сделать вывод, что изменение движения происходит посредствам силы. Механика рассматривает силы различной физической природы. Многие из них определяются с помощью действия сил тяготения.

Закон всемирного тяготения. Формулы

В 1862 году был открыт закон всемирного тяготения И. Ньютоном. Он предположил, что силы, удерживающие Луну, той же природы, что и силы, заставляющие яблоко падать на Землю. Смысл гипотезы состоит в наличии действия сил притяжения, направленных по линии и соединяющих центры масс, как изображено на рисунке 1.10.1. Шаровидное тело имеет центр массы, совпадающий с центром шара.

Рисунок 1.10.1. Гравитационные силы притяжения между телами. F1→=-F2→.

Далее, Ньютон искал физическое объяснение законам движения планет, которые открыл И. Кеплер в начале XVII века, и давал количественное выражение для гравитационных сил.

Определение 1

При известных направлениях движений планет Ньютон пытался выяснить, какие силы действуют на них. Этот процесс получил название обратной задачи механики.

Основная задача механики – определение координат тела известной массы с его скоростью в любой момент времени при помощи известных сил, действующих на тело, и заданным условием (прямая задача). Обратная же выполняется с определением действующих сил на тело с известным его направлением. Такие задачи привели ученого к открытию определения закона всемирного тяготения.

Ускорение свободного падения

Определение 2

Все тела притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними.

F=Gm1m2r2.

Значение G определяет коэффициент пропорциональности всех тел в природе, называемое гравитационной постоянной и обозначаемое по формуле G=6,67·10-11 Н·м2/кг2 (СИ).

Большинство явлений в природе объясняются наличием действия силы всемирного тяготения. Движение планет, искусственных спутников Земли, траектории полета баллистических ракет, движение тел вблизи поверхности Земли – все объясняется законом тяготения и динамики.

Определение 3

Проявлении силы тяготения характеризуется наличием силы тяжести. Так называется сила притяжения тел к Земле и вблизи ее поверхности.

Когда М обозначается как масса Земли, RЗ– радиус, m – масса тела, то формула силы тяжести принимает вид:

F=GMRЗ2m=mg.

Где g – ускорение свободного падения, равняющееся g=GMRЗ2.

Сила тяжести направлена к центру Земли, как показано в примере Луна-Земля. При отсутствии действия других сил тело движется с ускорением свободного падения. Его среднее значение равняется 9,81 м/с2. При известном G и радиусе R3=6,38·106 м производятся вычисления массы Земли М по формуле:

M=gR32G=5,98·1024 кг.

Если тело удаляется от поверхности Земли, тогда действие силы тяготения и ускорения свободного падения меняются обратно пропорционально квадрату расстояния r к центру. Рисунок 1.10.2 показывает, как изменяется сила тяготения, действующая на космонавта корабля, при удалении от Земли. Очевидно, что F притягивания его к Земле равняется 700 Н.

Рисунок 1.10.2. Изменение силы тяготения, действующей на космонавта при удалении от Земли.

Пример 1

Земля-Луна подходит в качестве примера взаимодействия системы двух тел.

Расстояние до Луны – rЛ=3,84·106 м. Оно в 60 раз больше радиуса Земли RЗ. Значит, при наличии земного притяжения, ускорение свободного падения αЛ орбиты Луны составит αЛ=gRЗrЛ2=9,81 м/с2602=0,0027 м/с2.

Оно направлено к центру Земли и получило название центростремительного. Расчет производится по формуле aЛ=υ2rЛ=4π2rЛT2=0,0027 м/с2, где Т =27,3 суток – период обращения Луны вокруг Земли. Результаты и расчеты, выполненные разными способами, говорят о том, что Ньютон был прав в своем предположении единой природы силы, удерживающей Луну на орбите, и силы тяжести.

Луна имеет собственное гравитационное поле, которое определяет ускорение свободного падения gЛ на поверхности. Масса Луны в 81 раз меньше массы Земли, а радиус в 3,7 раза. Отсюда видно, что ускорение gЛ следует определять из выражения:

gЛ=GMЛRЛ2=GMЗ3,72T32=0,17 g=1,66 м/с2.

Такая слабая гравитация характерна для космонавтов, находящихся на Луне. Поэтому можно совершать огромные прыжки и шаги. Прыжок вверх на метр на Земле соответствует семиметровому на Луне.

Искусственные спутники Земли

Движение искусственных спутников зафиксировано за пределами земной атмосферы, поэтому на них оказывают действие силы тяготения Земли.

Траектория космического тела может изменяться в зависимости от начальной скорости.

Движение искусственного спутника по околоземной орбите приближенно принимается  в качестве расстояния до центра Земли, равняющемуся радиусу RЗ. Они летают на высотах 200-300 км. 

Определение 4

Отсюда следует, что центростремительное ускорение спутника, которое сообщается силами тяготения, равняется ускорению свободного падения g. Скорость спутника примет обозначение υ1. Ее называют первой космической скоростью.

Применив кинематическую формулу для центростремительного ускорения, получаем

an=υ12RЗ=g, υ1=gRЗ=7, 91·103 м/с.

При такой скорости спутник смог облететь Землю за время, равное T1=2πRЗυ1=84 мин 12 с.

Но период обращения спутника по круговой орбите вблизи Земли намного больше, чем указано выше, так как существует различие между радиусом реальной орбиты и радиусом Земли.

Спутник движется по принципу свободного падения, отдаленно похожее на траекторию снаряда или баллистической ракеты. Разница заключается в большой скорости спутника, причем радиус кривизны его траектории достигает длины радиуса Земли.

Спутники, которые движутся по круговым траекториям на больших расстояниях, имеют ослабленное земное притяжение, обратно пропорциональное квадрату радиуса r траектории. Тогда нахождение скорости спутника следует по условию:

υ2к=gR32r2, υ=gR3RЗr=υ1R3r.

Поэтому, наличие спутников на высоких орбитах говорит о меньшей скорости их движения, чем с околоземной орбиты. Формула периода обращения равняется:

T=2πrυ=2πrυ1rRЗ=2πRзυ1rR33/2=T12πRЗ.

T1 принимает значение периода обращения спутника по околоземной орбите. Т возрастает с размерами радиуса орбиты. Если r имеет значение 6,6 R3 то Т спутника равняется 24 часам.

При его запуске в плоскости экватора, будет наблюдаться, как висит над некоторой точкой земной поверхности. Применение таких спутников известно в системе космической радиосвязи.

Орбиту, имеющую радиус r=6,6 RЗ, называют геостационарной.

Рисунок 1.10.3. Модель движения спутников.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/fizika/sily-v-prirode/zakon-vsemirnogo-tjagotenija/

Что такое гравитация для чайников: определение и теория простыми словами

Формула силы притяжения

Оби-Ван Кеноби сказал, что сила скрепляет галактику. То же самое можно сказать и о гравитации. Факт – гравитация позволяет нам ходить по Земле, Земле вращаться вокруг Солнца, а Солнцу двигаться вокруг сверхмассивной черной дыры в центре нашей галактики. Как понять гравитацию? Об этом — в нашей статье.

Сразу скажем, что вы не найдете здесь однозначно верного ответа на вопрос «Что такое гравитация». Потому что его просто нет! Гравитация – одно из самых таинственных явлений, над которым ученые ломают голову и до сих пор полностью не могут объяснить его природу.

Есть множество гипотез и мнений. Насчитывается более десятка теорий гравитации, альтернативных и классических. Мы рассмотрим самые интересные, актуальные и современные.

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм.

Гравитация – физическое фундаментальное взаимодействие

Всего в физике 4 фундаментальных взаимодействия. Благодаря им мир является именно таким, какой он есть. Гравитация – одно из этих взаимодействий.

Фундаментальные взаимодействия:

  • гравитация;
  • электромагнетизм;
  • сильное взаимодействие;
  • слабое взаимодействие.

Гравитация – самое слабое из четырех фундаментальных взаимодействий.

На текущий момент действующей теорией, описывающей гравитацию, является ОТО (общая теория относительности). Она была предложена Альбертом Эйнштейном в 1915-1916 годах.

Однако мы знаем, что об истине в последней инстанции говорить рано. Ведь несколько веков до появления ОТО в физике для описания гравитации главенствовала Ньютоновская теория, которая была существенно расширена.

В рамках ОТО на данный момент нельзя объяснить и описать все вопросы, связанные с гравитацией.

До Ньютона было широко распространено мнение, что гравитация на земле и небесная гравитация – разные вещи. Считалось, что планеты движутся по своим, отличным от земных, идеальным законам.

Закон всемирного тяготения

Ньютон открыл закон всемирного тяготения в 1667 году. Конечно, этот закон существовал еще при динозаврах и намного раньше.

Античные философы задумывались над существованием силы тяготения. Галилей экспериментально рассчитал ускорение свободного падения на Земле, открыв, что оно одинаково для тел любой массы. Кеплер изучал законы движения небесных тел.

Ньютону удалось сформулировать и обобщить результаты наблюдений. Вот что у него получилось:

Два тела притягиваются друг к другу с силой, называемой гравитационной силой или силой тяготения.

Формула силы притяжения между телами:

G – гравитационная постоянная, m – массы тел, r – расстояние между центрами масс тел.

Каков физический смысл гравитационной постоянной? Она равна силе, с которой действуют друг на друга тела с массами в 1 килограмм каждое, находясь на расстоянии в 1 метр друг от друга.

Закон всемирного тяготения

По теории Ньютона, каждый объект создает гравитационное поле. Точность закона Ньютона была проверена на расстояниях менее одного сантиметра. Конечно, для малых масс эти силы незначительны, и ими можно пренебречь .

Формула Ньютона применима как для расчету силы притяжения планет к солнцу, так и для маленьких объектов. Мы просто не замечаем, с какой силой притягиваются, скажем, шары на бильярдном столе. Тем не менее эта сила есть и ее можно рассчитать.

Сила притяжения действует между любыми телами во Вселенной. Ее действие распространяется на любые расстояния.

Закон всемирного тяготения Ньютона не объясняет природы силы притяжения, но устанавливает количественные закономерности. Теория Ньютона не противоречит ОТО. Ее вполне достаточно для решения практических задач в масштабах Земли и для расчета движения небесных тел.

Гравитация в ОТО

Несмотря на то, что теория Ньютона вполне применима на практике, она имеет ряд недостатков. Закон всемирного тяготения является математическим описанием, но не дает представления о фундаментальной физической природе вещей.

Согласно Ньютону, сила притяжения действует на любых расстояниях. Причем действует мгновенно. Учитывая, что самая большая скорость в мире – скорость света, выходит несоответствие. Как гравитация может мгновенно действовать на любые расстояниях, когда для их преодоления свету нужно не мгновение, а несколько секунд или даже лет?

В рамках ОТО гравитация рассматривается не как сила, которая действует на тела, но как искривление пространства и времени под действием массы.  Таким образом гравитация – не силовое взаимодействие.

Чем массивнее объект, тем сильнее он искривляет пространство

Каково действие гравитации? Попробуем описать его с использованием аналогии.

Представим пространство в виде упругого листа. Если положить на него легкий теннисный мячик, поверхность останется ровной. Но если рядом с мячиком положить тяжелую гирю, она продавит на поверхности ямку, и мячик начнет скатываться к большой и тяжелой гире. Это и есть «гравитация».

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Открытие гравитационных волн

Гравитационные волны были предсказаны Альбертом Эйнштейном еще в 1916 году, но открыли их только через сто лет, в 2015.

Что такое гравитационные волны? Снова проведем аналогию. Если бросить камень в спокойную воду, от места его падения по поверхности воды пойдут круги. Гравитационные волны – такая же рябь, возмущение. Только не на воде, а в мировом пространстве-времени.

Вместо воды – пространство-время, а вместо камня, скажем, черная дыра. Любое ускоренное передвижение массы порождает гравитационную волну. Если тела находятся в состоянии свободного падения, при прохождении гравитационной волны расстояние между ними изменится.

Моделирование гравитационных волн от слияния двух черных дыр

Так как гравитация – очень слабое взаимодействие, обнаружение гравитационных волн было связано с большими техническими трудностями. Современные технологии позволили обнаружить всплеск гравитационных волн только от сверхмассивных источников.

Подходящее событие для регистрации гравитационной волны — слияние черных дыр. К сожалению или к счастью, это происходит достаточно редко. Тем не менее ученым удалось зарегистрировать волну, которая буквально раскатилась по пространству Вселенной.

Для регистрации гравитационных волн был построен детектор диаметром 4 километра. При прохождении волны регистрировались колебания зеркал на подвесах в вакууме и интерференция света, отраженного от них.

Гравитационные волны подтвердили справедливость ОТО.

Гравитация и элементарные частицы

В стандартной модели за каждое взаимодействие отвечают определенные элементарные частицы. Можно сказать, что частицы являются переносчиками взаимодействий.

За гравитацию отвечает гравитон – гипотетическая безмассовая частица, обладающая энергией. Кстати, в нашем отдельном материале читайте подробнее о наделавшем много шума бозоне Хиггса и других элементарных частицах.

Напоследок приведем несколько любопытных фактов о гравитации.

10 фактов о гравитации

  1. Чтобы преодолеть силу гравитации Земли, тело должно иметь скорость, равную 7,91 км/с. Это первая космическая скорость. Ее достаточно, чтобы тело (например, космический зонд) двигалось по орбите вокруг планеты.
  2. Чтобы вырваться из гравитационного поля Земли, космический корабль должен иметь скорость не менее 11,2 км/с.

    Это вторая космическая скорость.

  3. Объекты с наиболее сильной гравитацией – черные дыры. Их гравитация настолько велика, что они притягивают даже свет (фотоны).
  4. Ни в одном уравнении квантовой механики вы не найдете силы гравитации. Дело в том, что при попытке включения гравитации в уравнения, они теряют свою актуальность.

    Это одна из самых важных проблем современной физики.

  5. Слово гравитация происходит от латинского “gravis”, что означает “тяжелый”.
  6. Чем массивнее объект, тем сильнее гравитация. Если человек, который на Земле весит 60 килограмм, взвесится на Юпитере, весы покажут 142 килограмма.

  7. Ученые NASA пытаются разработать гравитационный луч, который позволит перемещать предметы бесконтактно, преодолевая силу притяжения.
  8. Астронавты на орбите также испытывают гравитацию. Точнее, микрогравитацию. Они как бы бесконечно падают вместе с кораблем, в котором находятся.
  9. Гравитация всегда притягивает и никогда не отталкивает.
  10. Черная дыра, размером с теннисный мяч, притягивает объекты с той же силой, что и наша планета.

Состояние невесомости — это не отсутствие гравитации

Теперь вы знаете определение гравитации и можете сказать, по какой формуле рассчитывается сила притяжения.

Если гранит науки придавливает вас к земле сильнее, чем гравитация, обращайтесь в наш студенческий сервис. Мы поможем учиться легко при самых больших нагрузках!

Источник: https://Zaochnik-com.ru/blog/gravitaciya-dlya-chajnikov-opredelenie-i-teoriya-prostymi-slovami/

Формула силы притяжения

Формула силы притяжения

Уже древнегреческие философы задумывались над причинами притяжения тел к земной поверхности и закономерностями свободного падения. Аристотель, например, утверждал, что если бросить вниз с одинаковой высоты два камня, то более тяжелый достигнет поверхности первым. В IV в.

до н.э., когда жил этот мыслитель, единственным приемлемым методом познания считалось наблюдение и размышление, поэтому проверить опытом свое утверждение Аристотель не потрудился. Лишь спустя века итальянский физик Галилео Галилей (1564 – 1642 гг.

) решил подвергнуть утверждение античного философа испытанию практикой.

Результаты своих опытов он опубликовал в трактате «Беседы и математические доказательства, касающиеся двух новых наук», где писал от имени персонажа Сагредо: «пушечное ядро не опередит мушкетной пули при падении с высоты двухсот локтей».

Теоретически закрепить наблюдения Галилея о том, что тела разной массы падают на землю с равными ускорениями, смог Исаак Ньютон, сформулировавший около 1666 г. закон всемирного тяготения.

Согласно ему сила, с которой взаимно притягиваются друг к другу два тела, прямопропорциональна их массами и обратнопропорциональна расстоянию между ними.

Гравитацию Ньютон считал всеобщим свойством тел, обладающих массой, притягиваться друг к другу.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Достоверность открытия Ньютона была многократно подтверждена практикой. Однако к началу XX в. в физике появились задачи, связанные с крупными астрономическими объектами, такими, как планетарные системы, галактики.

Ньютоновский закон давал недостаточно точные результаты при наблюдениях за ними. Новую теорию, позволяющую устранить эти погрешности, разработал в начале XX в. Альберт Эйнштейн (1879 — 1955 гг.).

В своей Общей теории относительности он предложил считать гравитацию не силой, а зависящим от массы искривлением четырехмерного пространства-времени. При этом нельзя сказать, что открытие Эйнштейна отменило теорию гравитации Ньютона.

Закон всемирного тяготения является частным случаем Общей теории относительности, действующим на сравнительно небольших расстояниях. Он по-прежнему широко применяется при решении практических задач.

Закон всемирного тяготения

Определение 1

Гравитацией называется способность тел, обладающих массой, притягиваться друг к другу. Ее можно представить как поле, способное дистанционно воздействовать на объекты, которые не связаны никакими другими способами.

Гравитационную закономерность, найденную Ньютоном, математически можно сформулировать как

$F = G \cdot \frac{m_1 \cdot m_2}{r2}$,

где $m_1, m_2$ — массы притягивающихся с силой $F$ тел, $r$ — расстояние между ними, $G$ — т.н. гравитационная постоянная, констнта, равная 6,67.

Важно отметить, что

  1. сила гравитационного взаимодействия ослабевает по мере удаления тел друг от друга пропорционально не просто расстаянию, а расстоянию в квадрате;
  2. под расстоянием понимается не расстояние между поверхностями, а расстояние между центрами тяжести тел.

Замечание 1

Зависимость интенсивности от квадрата расстояния роднит гравитацию с другими фундаментальными физическими взаимодействиями: электромагнитным, сильным и слабым.

Квадратичная зависимость силы притяжения от расстояния позволяет понять, почему Солнце, масса которого в миллион раз больше земной, практически не притягивает нас, когда мы находимся на поверхности нашей планеты.

Расстояние от Земли до центра Солнечной системы составляет около 150 млн. км. На такой большой дистанции солнечная гравитация практически не ощущается, хотя с помощью высокоточных приборов ее можно зарегистрировать.

В условиях планеты Земля силу, с которой она притягивает к себе близлежащие предметы (иными словами, их вес) можно подсчитать как

$P = mg$,

где $m$ – масса притягиваемого объекта, $g$ – ускорение свободного падения близ Земли (для других планет значение будет отличаться). Ускорение свободного падения несколько колеблется в зависимости от географической широты, но в среднем его можно принимать как константу, равную $9,81 \frac{м}{с2}$.

Замечание 2

В физике вес и масса — разные понятия. Вес — сила, с которой притягивается тело к планете (не обязательно к Земле). Масса — мера инертности вещества и не зависит от находящихся рядом других тел. Однако в некоторых системах единиц измерения сила измеряется не в ньютонах, а в килограмм-силах. Для них утверждение «человек весит 80 кг» может оказаться справедливым.

Первая и вторая космические скорости

Гравитационную силу можно преодолеть с помощью противодействия других сил (например, реактивной), что делает возможными авиационные и космические полеты.

Можно провести мысленный эксперимент, представив пушку, стреляющую горизонтально с вершины высокой горы.

Такую систему удобно выбрать еще и потому, что воздух тоже подчиняется законам гравитации, и вблизи поверхности планеты он плотнее, чем, скажем, на высоте 8000 м. над уровнем моря.

Таким образом, снаряду, вылетающему из «высокогорной» пушки, вязкость атмосферы будет оказывать меньшее сопротивление.

Если выстрел из такой пушки будет относительно слабым, вылетевшее из нее тело упадет где-нибудь неподалеку под действием гравитации Земли, совершив полет по искривленной гравитацией траектории. Чем больше будет начальная скорость снаряда, тем дальше он пролетит, огибая земной шар.

Наконец, сила выстрела может достигнуть такого значения, что кривизна траектории снаряда совпадет с окружностью радиусом от центра Земли до пушки, и снаряд начнет вращаться вокруг планеты по круговой орбите. Скорость, на которой это произойдет, называется первой космической.

Ее можно вычислить как

$V_1 = \sqrt{G \cdot \frac{M}{R}}$,

где $G$ – гравитационная постоянная, $M$ – масса планеты, $R$ – ее радиус.

Пример 1

Масса Земли равна $ 5,97 \cdot 10{24}$ кг, радиус — $6371$ км. Подставив эти значения в формулу, получим, что первая космическая скорость здесь равна $7,9$ км/с.

Продолжая наращивать интенсивность выстрела, мы можем превратить траекторию сначала в эллиптическую (снаряд будет вращаться вокруг Земли по вытянутой орбите), а затем и в гиперболическую (он начнет удаляться от планеты, не возвращаясь к ней). Последнее будет означать, что снаряд достиг второй космической скорости, которую можно посчитать как

$V_2 = \sqrt{2 \cdot G \frac{M}{R}} = \sqrt{2} \cdot V_1 = 1,41 \cdot 7,9 \approx 11,17 км/с $

Источник: https://spravochnick.ru/fizika/formula_sily_prityazheniya/

Booksm
Добавить комментарий