Формула центростремительного ускорения в физике

Движение тела по криволинейной траектории. Движение по окружности. Характеристики вращательного движения. Центростремительное ускорение

Формула центростремительного ускорения в физике

Вам хорошо известно, что в зависимости от формы траектории движение делится на прямолинейное и криволинейное. С прямолинейным движением мы научились работать на предыдущих уроках, а именно решать главную задачу механики для такого вида движения.

Однако ясно, что в реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца и даже траектория движения ваших глаз, следящих сейчас за этим конспектом.

Вопросу о том, как решается главная задача механики в случае криволинейного движения, и будет посвящен этот урок.

Для начала определимся, какие принципиальные отличия есть у криволинейного движения (рис. 1) относительно прямолинейного и к чему эти отличия приводят.

Рис. 1. Траектория криволинейного движения

Поговорим о том, как удобно описывать движение тела при криволинейном движении.

Можно разбить движение на отдельные участки, на каждом из которых движение можно считать прямолинейным (рис. 2).

Рис. 2. Разбиение криволинейного движения на участки прямолинейного движения

А дальше на каждом из этих участков мы можем пользоваться законами прямолинейного движения, которые мы уже знаем. В принципе, такой подход возможен.

Однако более удобным является следующий подход. Мы представим это движение как совокупность нескольких движений по дугам окружностей (рис. 3). Обратите внимание, что таких разбиений меньше, чем в предыдущем случае, кроме того, движение по окружности является криволинейным. К тому же примеры движения по окружности в природе встречается очень часто. Из этого можно сделать вывод:

Для того чтобы описывать криволинейное движение, нужно научиться описывать движение по окружности, а потом произвольное движение представлять в виде совокупностей движений по дугам окружностей.

Рис. 3. Разбиение криволинейного движения на движения по дугам окружностей

Итак, начнем изучение криволинейного движения с изучения равномерного движения по окружности. Давайте разберемся, каковы принципиальные отличия криволинейного движения от прямолинейного.

Для начала вспомним, что в девятом классе мы изучили тот факт, что скорость тела при движении по окружности направлена по касательной к траектории (рис. 4).

Кстати, этот факт вы можете пронаблюдать на опыте, если посмотрите, как движутся искры при использовании точильного камня.

Рис. 4. Направление скорости при движении по окружности

Рассмотрим движение тела по дуге окружности (рис. 5).

Рис. 5. Скорость тела при движении по окружности

Обратите внимание, что в данном случае модуль скорости тела в точке  равен модулю скорости тела в точке :

Однако вектор  не равен вектору . Итак, у нас появляется вектор разности скоростей (рис. 6):

Рис. 6. Вектор разности скоростей

Причем изменение скорости произошло через некоторое время . Таким образом, мы получаем знакомую комбинацию:

Это не что иное, как изменение скорости за промежуток времени, или ускорение тела. Можно сделать очень важный вывод:

Движение по криволинейной траектории является ускоренным. Природа этого ускорения – непрерывное изменение направление вектора скорости.

Еще раз отметим, что, даже если говорится, что тело равномерно движется по окружности, имеется в виду, что модуль скорости тела не изменяется. Однако такое движение всегда является ускоренным, поскольку изменяется направление скорости.

В девятом классе вы изучали, чему равно такое ускорение и как оно направлено (рис. 7). Центростремительное ускорение  всегда направлено к центру окружности, по которой движется тело.

Рис. 7. Центростремительное ускорение

Модуль центростремительного ускорения может быть рассчитан по формуле:

Переходим к описанию равномерного движения тела по окружности. Договоримся, что скорость , которой вы пользовались по время описания поступательного движения, теперь будет называться линейной скоростью. И под линейной скоростью мы будем понимать мгновенную скорость в точке траектории вращающегося тела.

Рис. 8. Движение точек диска

Рассмотрим диск, который для определенности вращается по часовой стрелке. На его радиусе отметим две точки  и  (рис. 8). Рассмотрим их движение.

За некоторое время  эти точки переместятся по дугам окружности и станут точками  и . Очевидно, что точка  совершила большее перемещение, чем точка .

Из этого можно сделать вывод, что чем дальше от оси вращения находится точка, тем с большей линейной скоростью она движется

Однако если внимательно посмотреть на точки  и , можно сказать, что неизменным остался угол , на который они повернулись относительно оси вращения . Именно угловые характеристики мы и будем использовать для описания движения по окружности. Отметим, что для описания движения по окружности можно использовать угловые характеристики.

Начнем рассмотрение движения по окружности с самого простого случая – равномерного движения по окружности. Напомним, что равномерным поступательным движением называется движение, при котором за любые равные промежутки времени тело совершает одинаковые перемещения. По аналогии можно дать определение равномерного движения по окружности.

Равномерным движением по окружности называется движение, при котором за любые равные промежутки времени тело поворачивается на одинаковые углы.

Аналогично понятию линейной скорости вводится понятие угловой скорости.

Угловой скоростью равномерного движения ( называется физическая величина, равная отношению угла, на который повернулось тело, ко времени, за которое произошел этот поворот.

В физике чаще всего используется радианная мера угла. Например, угол в  равен  радиан. Измеряется угловая скорость в радианах в секунду:

Найдем связь между угловой скоростью вращения точки и линейной скоростью этой точки.

Рис. 9. Связь между угловой и линейной скоростью

Точка  проходит при вращении дугу длиной , поворачиваясь при этом на угол . Из определения радианной меры угла можно записать:

Разделим левую и правую части равенства на промежуток времени , за который было совершено перемещение, затем воспользуемся определением угловой и линейной скоростей:

Обратим внимание, что чем дальше точка находится от оси вращения, тем выше ее линейная скорость. А точки, расположенные на самой оси вращения, неподвижны. Примером этого может служить карусель: чем ближе вы находитесь к центру карусели, тем легче вам на ней удержаться.

Такая зависимость линейной и угловой скоростей используется в геостационарных спутниках (спутники, которые всегда находятся над одной и той же точкой земной поверхности). Благодаря таким спутникам мы имеем возможность получать телевизионные сигналы.

Вспомним, что ранее мы вводили понятия периода и частоты вращения.

Период вращения – время одного полного оборота. Период вращения обозначается буквой  и измеряется в секундах в СИ:

Частота вращения – физическая величина, равная количеству оборотов, которое тело совершает за единицу времени.

Частота обозначается буквой  и измеряется в обратных секундах:

Они связаны соотношением:

Существует связь между угловой скоростью и частотой вращения тела. Если вспомнить, что полный оборот равен , легко увидеть, что угловая скорость:

Подставляя эти выражения в зависимость между угловой и линейной скоростью, можно получить зависимость линейной скорости от периода или частоты:

Запишем также связь между центростремительным ускорением и этими величинами:

Таким образом, мы знаем связь между всеми характеристиками равномерного движения по окружности.

Подытожим. На этом уроке мы начали описывать криволинейное движение. Мы поняли, каким образом можно связать криволинейное движение с движением по окружности.

Движение по окружности всегда является ускоренным, а наличие ускорения обуславливает тот факт, что скорость всегда меняет свое направление. Такое ускорение называется центростремительным.

Наконец, мы вспомнили некоторые характеристики движения по окружности (линейную скорость, угловую скорость, период и частоту вращения) и нашли соотношения между ними.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. – М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. – М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. – М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. – М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Аyp.ru (Источник).
  2. Википедия (Источник).

Домашнее задание

Решив задачи к данному уроку, вы сможете подготовиться к вопросам 1 ГИА и вопросам А1, А2 ЕГЭ.

  1. Задачи 92, 94, 98, 106, 110 – сб. задач А.П. Рымкевич, изд. 10
  2. Вычислите угловую скорость движения минутной, секундной и часовой стрелок часов. Вычислите центростремительное ускорение, действующее на кончики этих стрелок, если радиус каждой из них равен одному метру.

Источник: https://interneturok.ru/lesson/physics/10-klass/mehanikakinematika/dvizhenie-tela-po-krivolineynoy-traektorii-dvizhenie-po-okruzhnosti-harakteristiki-vraschatelnogo-dvizheniya-tsentrostremitelnoe-uskorenie

Центростремительное ускорение — формула, направление и физический смысл

Формула центростремительного ускорения в физике

Явления, происходящие в окружающем мире, описываются рядом изменений, зависящих от времени и пространства.

Простейшим видом такого процесса является движение, то есть изменение положения материальной точки относительно других окружающих объектов. Кинематика изучает любое перемещение, но при этом не выясняет вызвавших его причин.

Несмотря на то что любое физическое тело имеет размеры, ими обычно пренебрегают, считая любое тело точкой.

Движение представляет собой векторную величину и является отрезком, соединяющим начальное положение с конечным. Путь же, пройденный точкой, считается скалярным и определяется как дуга траектории, пройденная телом за установленный промежуток времени.

Быстрота перемещения определяется скоростью, рассчитываемой от выбранной начальной системы отсчёта. Первую производную скорости, взятой по времени, называют ускорением.

Обозначать ускорение в физике условились латинской буквой «a». Находят параметр по формуле: a = dv / dt, где dV и dt — изменение скорости и времени. Существует несколько видов физической величины:

  1. Тангенциальное (касательное) — характеризует изменение быстроты, направленной по касательной.
  2. Центростремительное (нормальное) — наблюдается при перемещении как по окружности, так и по траектории, описываемой ненулевой кривизной.
  3. Угловое — показывает, как изменяется угловая скорость за определённый промежуток времени, то есть относительно центра вращения к радиусу окружности.
  4. Полное — складываемое из предыдущих видов ускорения.

Пусть имеется тело, которое движется по окружности. В начальный момент оно находилось в точке один, а после переместилось в точку два. Произошло это за время, равное Δt.

За этот промежуток физический объект повернулся на угол f. Для описания процесса вводится понятие «угловая скорость».

Обозначается она буквой гамма (w) и равняется углу, на который повернулось тело за единицу времени: w = f / Δt.

Простым примером нормального ускорения является движение по окружности. Вызывается оно силами, приложенными ортогонально вектору скорости. На чертеже его можно изобразить как вектор, перпендикулярный касательной пути в выбранной точке.

Рассчитывается центростремительное ускорение по формуле: an = w 2 * R, где w — угловая скорость, R — радиус кривизны.

В векторном виде формула принимает вид: an = (V2 / R) * e, где e — единичный вектор, рассчитываемый от центра кривизны к точке.

Вывод формулы

Математическое обоснование формулы для нахождения центростремительного ускорения при движении по окружности либо другой кривой траектории строится следующим образом. Величина убыстрения вычисляется, когда направление ускорения меняется, а вектор же всегда направлен к центру, причём его модуль равняется квадрату скорости, делённому на радиус: a = V2 / r.

Можно представить спутник, который движется по круговой орбите вокруг Земли. Некоторые космические тела описывают окружность и вращаются против часовой стрелки. Радиус-вектор удобно определить как функцию времени. Он изменяется при вращении тела по окружности P(t). Итак, за начало координат можно взять точку, обозначающую планету Земля и провести через неё координатные оси.

Нужно определить вектор между положительной полуосью P(x) и радиус-вектором Q. Орбита имеет радиус R, величина которого постоянна. Модуль изменяющегося радиус-вектора будет равняться r || p (+)|| = r. Чтобы записать вектор через компоненты, используются основы тригонометрии, позволяющие выполнить разложение по базису.

В какой-то момент времени радиус-вектор будет обладать модулем r. Его угол равняется по иксу компоненте r * cosQ, а по игреку — r * sinQ. Параметр в любой момент может быть выражен через сумму икс и игрек компонентов: p (t) = r * cosQ (t) * I + r * sinQ (t) * j, где I — базис для икса компоненты, направленной вдоль оси ординаты, а j — параллельно оси абсциссы.

Производная от всего этого выражения и будет вектором скорости как функция от времени: V (t) = dp / dt = r (-sinQ (t)) * w * I + r * cosQ (t) * w * j.

Сделав преобразования, можно получить выражение следующего вида: V (t) = -w * r (sinQ (t) * I — cos Q (t) * j).

Теперь нужно взять производную от скорости, что является ускорением по времени: a (t) = dV / dt = =w * r * (cos (Q (t) * w * I + sin (Q (t) * w * j) = — w2 * r * (cos (Q (t) * I + sinQ (t) * j) = — w2 * p (t).

Таким образом, вектор ускорения как функция времени равняется отрицательному квадрату угловой скорости на радиус вектор. Теперь необходимо взять модуль обеих частей.

В итоге получится: ac = w 2 * r = (V/r)2 * r. Следует заметить, что направление центростремительного ускорения будет внутрь. В полученной формуле r сокращается и получается доказываемая формула: ac = V2 / r.

Фактическое понятие

Пусть имеется физическая точка, совершающая равномерное движение по окружности. Чтобы найти направление, следует принять, что за промежуток времени t рассматриваемое тело переместится из точки А в точку Б. При этом скорость перемещения будет постоянной по модулю. Если нарисовать вектора скорости в точках А и Б, то можно найти вектор изменения скорости дельта V.

Для этого нужно рассмотреть треугольники АБО и БОВ. Так как они равнобедренные, то углы при их вершинах идентичные, согласно теореме о взаимно перпендикулярных сторонах. Отсюда следует, что треугольники подобны. Используя правило подобия, верным будет записать пропорцию: БС / ОА = БВ / АБ.

Каждому отрезку соответствует свой физический параметр. Переходя к их обозначениям, полученное соотношение можно переписать в виде: V / r = ΔV / Δr. Следовательно, v = v * Δr / r.

Если обе части равенства разделить на промежуток времени, определяющий, за сколько произойдёт смена положения с учётом того, что a = ΔV / t; V = r / t, то равенство примет вид: a = V * V / r = V2 / r.

Если всё это изобразить на рисунке, то видно, что для определения ускорения нужно брать предел от Δt до бесконечности. Так как момент вращательный, то это значит, что угол w будет стремиться к нулю. Отсюда отрезок АБ стремится совместиться с АО, то есть вектор ускорения сонаправлен с изменением скорости.

Поэтому можно дать определение, что вектор ускорения при равномерном обращении всегда направлен к центру вращения, являясь, по сути, центростремительным.

Такого рода ускорение изменяет направление скорости, но оставляет неизменным её величину и является перпендикулярным вектору скорости. Как и любое убыстрение, за единицу измерения центростремительного ускорения берётся метр на секунду в квадрате, то есть единицы длины, делённые на квадрат единиц времени.

При решении задач часто также используется связь между угловой скоростью и линейной: a = V2 / r = (w * r) / r = w2 * r. Если провести аналогию дальше, то можно найти зависимость с равнопеременным прямолинейным движением: a = V — V 0 / t и равнопеременным перемещением по окружности: b = (w — w 0) / t = (v — v 0) / (r * t) = a / r .

Решение простых задач

После изучения теоретического материала важным этапом понимания темы является решение практических заданий. Существующие задачи можно разделить на элементарные и повышенного уровня.

Учащимся в седьмом классе преподаватель задаёт для самостоятельного решения обычно несколько типовых заданий, научившись решать которые ученик получает не только практический опыт, но и понимает смысл изучения равнопеременного или равноускоренного движения.

Из наиболее типовых заданий можно выделить следующие:

  1. На велотреке спортсмен проходит закруглённый поворот радиусом 25 метров. Необходимо рассчитать скорость велосипедиста, если известно, что его центростремительная скорость равняется четыре метра в секунду. Решение задачи выполняется по формуле ускорения: a = V2 / R. Из неё можно выразить скорость: v = (4 * 25)½ = 10 м/с.
  2. С какой скоростью должен ехать автомобилист, чтобы пройти середину подъёма, имеющего доцентровое расстояние 22,5 метра, если его центростремительное ускорение и свободного падения должны равняться друг другу? Известно, что скорость связана с ускорением через формулу: V = √(a * R). Так как ускорение равняется величине свободного падения, то исходных данных хватает, чтобы их подставить в формулу и найти ответ: V = 10 * 22,5 = 15 м/с.
  3. Скорость на экваторе земной поверхности при вращении Земли вокруг своей оси составляет два километра в секунду. Необходимо определить период вращения Земли и центростремительное ускорение физического тела, располагающегося на экваторе. Центробежной силой пренебречь. Для решения задачи необходимо знать радиус Земли. Он составляет приблизительно 6300 км. Используя основную формулу, можно вычислить ускорение: a = V2 / R = 22 / 6 300 = 5,3 * 10-3 км/с. Так как V = 2pR / V, то из формулы можно выразить период: T = 2 pR / V = (2 * 3,14 * 6,3 * 108) / 2 * 103 = 575 ч = 24 сут.
  4. Как должен измениться радиус поворота колеса в автомобиле, если скорость движения машины составляет три метра в секунду, а ускорение — пять метров в секунду? Для удобства можно изобразить зависимость траектории движения на рисунке.

    На нём обозначить скорость и ускорение, указать начало системы координат в точке нахождения колеса. Одна ось получится направленной вдоль радиуса, а вторая — по касательной к окружности. Для решения задачи понадобится формула, связывающая скорость и ускорение: V2 = a * R.

    Из неё можно выразить искомый радиус: R = V2 / a = 32 / 5 = 1,8 метров.

Сложные задания

Элементарные задачи решать просто, понимая суть ускорения и зная формулы. Сложнее проводить вычисления, когда необходимо использовать несколько выражений и знать зависимость параметров между собой, а также единицы их измерения. Вот некоторые из таких примеров повышенного уровня.

Движение тела описано уравнением: k(t) = N (I * coswt + j * sinwt). Известно, что N равняется 0,5 метров, а w составляет пять радианов в секунду. Нужно вычислить скорость по модулю и модульное значение нормального ускорения. Решение задачи следует выполнять по следующему алгоритму:

  1. Найти вектор скорости: V(t) = I * (drx / dt) + j * (dry / dt) = — i * Nw * coswt + j * Nw * sinwt.
  2. Определить значение скорости, согласно начальным координатам: Vx = — i * Nw * coswt; Vy = j * Nw * sinwt.
  3. Вычислить скорость по формуле: V = ( Vx 2 + Vy 2)1/2 = ((- Nw * cos2wt)2 + (Nw * sinwt)2)1/2 = ( N 2 w 2)1/2 = N * w = 2,5 метров в секунду.
  4. Используя формулу ускорения, рассчитать ответ: a = I * Nw2 * sinwt + j * Nw2 coswt = A * w2 = 12,5 метров, делённых на секунды в квадрате.

Пусть имеется точка, движущаяся по окружности с радиусом, равным двум метрам. Её путь описывается уравнением: j = At2. Найти, в какой момент нормальное ускорение сравняется с тангенциальным и вычислить полное убыстрение тела. При этом А = 2 м/с2, а центробежный момент мал и его можно не учитывать.

Для решения примера следует сначала выписать необходимые формулы.

Так, центростремительное ускорение точки определяется с помощью выражения: a = V 2 / R = ( dS ( t )/ dt )2 / R = (3 At 2)2 / R. Тангенциальное ускорение вычисляется из выражения: at = d 2 S ( t ) / d 2= A * t. Так как по условию ускорения равны, то можно записать равенство: ((3 At2)2) / R = 6 At. Отсюда можно выразить время: t = √‎(2 R /3 A ) = 0,874 секунды.

Полное ускорение точки вычисляется по формуле: a = √ a2 n + a2 t ‎ = √‎ 2 at = √‎ 2 * 6 * At = 14,82 м / с2. Теперь можно рассчитать угловую скорость точки, она составит: w = (1/r) * ds(t) / dt = 3At2 / R = 2,289 и будет измеряться в радианах, делённых на секунду. Угловое же ускорение находится по формуле є = a / R = (6 * At) / t = 5,241 рад / с2. Задача решена.

Источник: https://nauka.club/fizika/tsentrostremitelno%D0%B5-uskoreni%D0%B5.html

Центростремительное ускорение. Вывод формулы. — dx/dy

Формула центростремительного ускорения в физике
Jul 22, 2019 · 5 min read

Движение по окружности часто встречается в природе и в деятельности человека. По окружности движутся спутники вокруг Земли (при упрощенном рассмотрении, на самом деле по эллиптической орбите), по окружности двигаются детали механизмов, ободы колес, шестерен, движение по окружности возникает при движении машин по закруглению дороги и так далее.

Рассмотрим равномерное движение тела по окружности.

Вектор скорости в таком случае направлен по касательной к окружности, и при движении не меняется по модулю, но, очевидно, изменяется по направлению.

Изобразим такое движение на схеме:

На схеме видно, как точка движется по окружности, из начального положения M переходит последовательно в положения М₁, М₂, М₃. Очевидно, что модуль вектора скорости в этих положениях не изменяется, а вектор всегда направлен по касательной окружности в этой точке.

Рассмотрим внимательнее перемещение точки из положения М в положение М₁ за интервал времени

Источник: https://medium.com/dxdy/%D1%86%D0%B5%D0%BD%D1%82%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B5%D0%BC%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5-%D1%83%D1%81%D0%BA%D0%BE%D1%80%D0%B5%D0%BD%D0%B8%D0%B5-%D0%B2%D1%8B%D0%B2%D0%BE%D0%B4-%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D1%8B-12ec23fe377e

Центростремительное ускорение при движении по окружности: понятие и формулы. Центробежная и центростремительная силы

Формула центростремительного ускорения в физике

При изучении движения в физике важную роль играет понятие траектории. Именно она определяет во многом тип перемещения объектов и, как следствие, вид формул, с помощью которых описывают это перемещение. Одной из распространенных траекторий движения является окружность. В данной статье рассмотрим, что такое ускорение центростремительное при движении по окружности.

Понятие о полном ускорении

Прилагательные к слову «работа»: список примеров

Прежде чем характеризовать при движении по окружности центростремительное ускорение рассмотрим понятие полного ускорения. Под ним полагают физическую величину, которая одновременно описывает изменение значения абсолютного и вектора скорости. В математическом виде это определение выглядит так:

a¯ = dv¯/dt

Ускорение является полной производной скорости по времени.

Как известно, скорость v¯ тела в каждой точке траектории направлена по касательной. Этот факт позволяет представить ее в виде произведения модуля v на единичный касательный вектор u¯, то есть:

v¯ = v*u¯

Тогда полное ускорение можно вычислить следующим образом:

a¯ = d(v*u¯)/dt = dv/dt*u¯ + v*du¯/dt

Величина a¯ представляет собой сумму векторную двух слагаемых. Первое слагаемое направлено по касательной (как скорость тела) и называется тангенциальным ускорением. Оно определяет быстроту изменения модуля скорости. Второе слагаемое — это нормальное ускорение. Рассмотрим его подробнее далее в статье.

Нормальная компонента ускорения

Полученное выше выражение для нормальной компоненты ускорения an¯ запишем в явном виде:

an¯ = v*du¯/dt = v*du¯/dl*dl/dt = v2/r*re¯

Здесь dl — пройденный телом вдоль траектории путь за время dt, re¯ — единичный вектор, направленный к центру кривизны траектории, r — радиус это кривизны. Полученная формула приводит к нескольким важным особенностям компоненты an¯ полного ускорения:

  • Величина an¯ растет как квадрат скорости и убывает обратно пропорционально радиусу, что отличает ее от тангенциальной компоненты. Последняя не равна нулю только в случае изменения модуля скорости.
  • Нормальное ускорение направлено всегда к центру кривизны, поэтому оно называется центростремительным.

Таким образом, главным условием существования ненулевой величины an¯ является кривизна траектории. Если такой кривизны не существует (прямолинейное перемещение), то an¯ = 0, так как r->∞.

Ускорение центростремительное при движении по окружности

Окружность — геометрическая линия, все точки которой находятся на одном расстоянии от некоторой точки. Последняя называется центром окружности, а упомянутое расстояние — это ее радиус.

Если скорость тела во время вращения не изменяется по модулю, то говорят о равнопеременном движении по окружности.

Ускорение центростремительное в этом случае легко рассчитать по одной из двух формул ниже:

an = v2/r;

an = ω2*r

Где ω — угловая скорость, измеряется в радианах в секунду (рад/с). Второе равенство получено благодаря формуле связи между угловой и линейной скоростями:

v = ω*r

Силы центростремительная и центробежная

При равномерном движении тела по окружности ускорение центростремительное возникает за счет действия соответствующей центростремительной силы. Ее вектор всегда направлен к центру окружности.

Природа этой силы может быть самой разнообразной. Например, когда человек раскручивает привязанный к веревке камень, то на своей траектории его удерживает сила натяжения веревки.

Другим примером действия центростремительной силы является гравитационное взаимодействие между Солнцем и планетами. Именно оно заставляет двигаться по круговым орбитам все планеты и астероиды.

Центростремительная сила не способна изменить кинетическую энергию тела, поскольку направлена она к его скорости перпендикулярно.

Каждый человек мог обратить внимание на то, что во время поворота автомобиля, например, налево, пассажиров прижимает к правому краю салона транспортного средства. Этот процесс является результатом действия центробежной силы вращательного движения. На самом деле эта сила является ненастоящей, поскольку обусловлена инерционными свойствами тела и его стремлением двигаться по прямой траектории.

Центробежная и центростремительная силы равны друг другу по величине и противоположны по направлению. Если бы этого не было, то круговая траектория движения тела нарушилась бы. Если учесть второй закон Ньютона, то можно утверждать, что при вращательном движении ценробежное ускорение равно центростремительному.

Источник

Источник: https://1Ku.ru/obrazovanie/52221-centrostremitelnoe-uskorenie-pri-dvizhenii-po-okruzhnosti-ponjatie-i-formuly-centrobezhnaja-i-centrostremitelnaja-sily/

Решу егэ

Формула центростремительного ускорения в физике

4.1. Движение по окружности с постоянной скоростью.

Движение по окружности — простейший вид криволинейного движения.

4.1.1. Криволинейное движение — движение, траекторий которого является кривая линия.

Для движения по окружности с постоянной скоростью:

1) траектория движения — окружность;

2) вектор скорости направлен по касательной к окружности;

3) вектор скорости постоянно меняет свое направление;

4) за изменение направления скорости отвечает ускорение, называемое центростремительным (или нормальным) ускорением;

5) центростремительное ускорение меняет только направление вектора скорости, при этом модуль скорости остается неизменным;

6) центростремительное ускорение направлено к центру окружности, по которой происходит движение (центростремительное ускорение всегда перпендикулярно вектору скорости).

4.1.2. Период (T) — время одного полного оборота по окружности.

Это величина постоянная, так как длина окружности постоянная и скорость движения постоянна

4.1.3 Частота  — число полных оборотов за 1 с.

По сути, частота отвечает на вопрос: как быстро вращается тело?

4.1.4. Линейная скорость — показывает, какой путь проходит тело за 1 с (это та же самая скорость, о которой говорилось в предыдущих темах)

где R — радиус окружности.

4.1.5.

Угловая скорость показывает, на какой угол поворачивается тело за 1 с.

где  — угол, на который повернулось тело за время

4.1.6. Центростремительное ускорение

Напомним, что центростремительное ускорение отвечает только за поворот вектора скорости. При этом, так как скорость постоянная величина, то значение ускорения тоже постоянно.

4.1.7. Закон изменения угла поворота

Это полный аналог закона движения при постоянной скорости :

Роль координаты x играет угол роль начальной координаты играет скорость  — угловая скорость И с формулой следует работать так же, как ранее работали с формулой закона равномерного движения.

4.2. Движение по окружности с постоянным ускорением.

4.2.1. Тангенциальное ускорение

Центростремительное ускорение отвечает за изменение направления вектора скорости, но если еще меняется и модуль скорости, то необходимо ввести величину отвечающую за это — тангенциальное ускорение

Из вида формулы ясно, что  — это обычное ускорение, о котором говорилось раньше. Если то справедливы формулы равноускоренного движения:

где S — путь, который проходит тело по окружности.

Итак, еще раз подчеркнем, отвечает за изменение модуля скорости.

4.2.2. Угловое ускорение

Мы ввели аналог скорости для движения по окружности — угловая скорость. Естественно будет ввести и аналог ускорения — угловое ускорение

Угловое ускорение связано с тангенциальным ускорением:

Из формулы видно, что если тангенциальное ускорение постоянно, то и угловое ускорение будет постоянно. Тогда можем записать:

Формула является полным аналогом закона равнопеременного движения, поэтому работать с этой формулой мы уже умеем.

4.2.3. Полное ускорение

Центростремительное (или нормальное) и тангенциальное ускорения не являются самостоятельными. На самом деле, это проекции полного ускорения на нормальную (направлена по радиусу окружности, то есть перпендикулярно скорости) и тангенциальную (направлена по касательной к окружности в сторону, куда направлен вектор скорости) оси. Поэтому

Нормальная и тангенциальные оси всегда перпендикулярны, следовательно, абсолютно всегда модуль полного ускорения можно найти по формуле:

4.4. Движение по криволинейной траектории.

Движение по окружности является частным видом криволинейного движения. В общем случае, когда траектория представляет собой произвольную кривую (см. рис.

), всю траекторию можно разбить на участки: AB и DE — прямолинейные участки, для которых справедливы все формулы движения по прямой; а для каждой участка, который нельзя рассмотреть как прямую, строим касательную окружность (окружность, которая касается траектории только в этой точке) — в точках C и D. Радиус касательной окружности называется радиусом кривизны. В каждой точке траектории радиус кривизны имеет свое значение.

Формула для нахождения радиуса кривизны :

где  — нормальное ускорение в данной точке (проекция полного ускорения на ось, перпендикулярную вектору скорости).

Источник: https://phys-ege.sdamgia.ru/handbook?id=164

Booksm
Добавить комментарий