Физическая гипотеза чёрной дыры средней массы

Содержание
  1. Что такое черная дыра?
  2. Как образуются черные дыры?
  3. Особенности черной дыры
  4. Как мы узнали о существовании этих космических монстров?
  5. Ранние гипотезы
  6. Общая теория относительности
  7. Открытие Лебедя X-1 (Cygnus X-1)
  8. Обнаружение
  9. Какая самая большая черная дыра?
  10. Излучение
  11. 10 фактов о черных дырах, которые должен знать каждый
  12. Черные дыры. Факты и теория
  13. Обычные черные дыры. Небольшие, но смертельные
  14. Супермассивные черные дыры — рождение гигантов
  15. Промежуточные черные дыры — застрявшие посередине
  16. Теория черных дыр — как они работают
  17. Горизонт событий
  18. Сияющий свет двойных черных дыр
  19. Интересные факты о черных дырах
  20. Вначале были дыры. Что если первые черные дыры появились задолго не только до звезд, но даже первых атомов во Вселенной
  21. Дыры вместо материи
  22. Ограничения и гравитационные волны
  23. Первопричина всего
  24. Общепринятой теории формирования сверхмассивных черных дыр нет — они слишком велики, чтобы получиться при коллапсе даже самых больших и тяжелых из известных нам звезд.
  25. Даже если их нет, их стоило бы придумать
  26. Физическая гипотеза чёрной дыры средней массы
  27. Черные дыры
  28. Один из видов классификации черных дыр
  29. Механизмы возникновения черной дыры средней массы
  30. Кандидат в черные дыры средней массы

Что такое черная дыра?

Физическая гипотеза чёрной дыры средней массы

Черная дыра — это область в пространстве-времени, которая имеет гравитационное притяжение настолько сильное, что ничто, даже свет, не может ее покинуть.

Граница черной дыры, за пределы которой не может вырваться никакой другой объект или излучение, называется горизонтом событий, а расстояние между этой границей и бесконечно плотным ядром — гравитационным радиусом или радиусом Шварцшильда.

Считается, что любая масса, спрессованная в сферу, радиус которой меньше или равен радиусу Шварцшильда, является черной дырой. Настолько сжатая масса может возникнуть, например, в результате гравитационного коллапса на самых поздних этапах развития очень тяжелой звезды.

Как образуются черные дыры?

Эти монстры возникают как фениксы, возрождаясь из пепла мертвых звезд. Известно, что в звездах происходят реакции термоядерного синтеза — слияние ядер легких атомов в более тяжелые, с выделением большого количества энергии.

Так вот, когда звезды достигают конца своей жизни, запасы водорода, который они превращают в гелий, почти полностью истощаются. После водорода они начинают сжигать гелий и так далее, превращая оставшиеся атомы в еще более тяжелые элементы, вплоть до железа, чье слияние уже не дает достаточно энергии для поддержания внешних слоев звезды.

Вследствие этого верхние слои рушатся внутрь и взрываются — этот взрыв называется вспышкой сверхновой.

Теоретически, такой взрыв может сжать массу вещества достаточно, чтобы ее радиус стал меньше или равен радиусу Шварцшильда, и она превратилась в черную дыру. Чтобы вы понимали, типичная нейтронная звезда (то, что обычно остается от звезды после вспышки сверхновой) имеет радиус Шварцшильда около 1/3 от ее собственного радиуса.

После образования черная дыра продолжает расти, поглощая материю из окружающего пространства. Поглощение звезд и слияние с другими черными дырами может привести к образованию сверхмассивной черной дыры. Согласно общему пониманию, такие объекты существуют в центрах большинства галактик.

Особенности черной дыры

Черная дыра выглядит очень необычно, лишь отдаленно напоминая некую планету, имеющую странные изогнутые кольца. Однако без аккреционного диска, вращающегося вокруг нее, мы бы ее даже не увидели. Давайте посмотрим какие у нее есть внешние особенности.

Отличительные черты черной дыры

Аккрецонный диск

Кольцевая структура аккреционного диска, состоит из вещества, падающего на черную дыру, оно разогрето и поэтому светится.

Фотонное кольцо

Фотонное кольцо (или орбита фотона) — это свет, который несколько раз сгибался вокруг черной дыры, прежде чем ускользнуть. Он имеет много слоев, которые становятся все тусклее и тусклее, это происходит потому, что с каждым новым витком свету сложнее вырваться за пределы этого монстра.

Эффект Доплера

На приведенном выше изображении левая сторона аккреционного диска выглядит ярче, чем правая из-за Эффекта Доплера, который обусловлен огромной орбитальной скоростью.

Гравитационное линзирование

Мы видим изогнутый аккреционный диск (сверху и снизу), потому что гравитация отклоняет направление света.

Как мы узнали о существовании этих космических монстров?

Уже обнаружено около тысячи объектов, которые причисляются к черным дырам. Всего же предполагается существование десятков миллионов таких объектов. Опишем коротко, как человечество пришло к таким открытиям.

Ранние гипотезы

Гипотеза о существовании такого массивного объекта была впервые предложена в 1783 году английским геологом Джоном Митчеллом в письме Генри Кавендишу из Британского королевского общества.

В то время теория гравитации Ньютона и идея второй космической скорости были хорошо известны.

По оценкам Митчелла, тело с радиусом в 500 раз больше солнечного и с такой же плотностью будет иметь на своей поверхности вторую космическую скорость, равную скорости света, и поэтому будет невидимым.

В 1796 году французский математик Пьер-Симон Лаплас предложил ту же идею в первом и втором изданиях своей книги «Exposition du système du monde». Однако она не привлекла большого внимания в 19 веке и исчезла из последующих изданий его книги, так как в то время свет считался безмассовой волной, не подверженной влиянию гравитации.

Общая теория относительности

В 1915 году Альберт Эйнштейн разработал общую теорию относительности, ранее показав, что гравитация влияет на движение света. Через несколько месяцев Шварцшильд дал решение для уравнений Эйнштейна (Метрика Шварцшильда), которое достаточно точно описывает гравитационное поле уединённой невращающейся и незаряженной чёрной дыры.

В 1939 году Роберт Оппенгеймер и Хартланд Снайдер предсказали, что массивные звезды могут подвергнуться резкому гравитационному коллапсу. Однако черные дыры (как гипотетические объекты) не были предметом большого интереса до конца 1960-х годов. Интерес к ним ожил в 1967 году с открытием пульсаров.

Открытие Лебедя X-1 (Cygnus X-1)

Астрономы из Военно-морской исследовательской лаборатории США обнаружили Лебедь Х-1 в 1964 году. Он был дополнительно исследован в 1970-х годах, когда был запущен рентгеновский спутник Ухуру (Uhuru).

Когда за объектом начали наблюдать, обнаружилось, что его не было видно ни на одной плоскости электромагнитного спектра, кроме рентгеновских лучей. Более того, рентгеновские лучи мерцали по интенсивности каждую миллисекунду.

Затем астрономы переключились на его ближайшего соседа — звезду HDE 226868, у которого была замечена орбита, указывающая на то, что он является частью двойной системы. Однако странность заключалась в том, что ни одна звезда-компаньон не находилась в непосредственной близости от HDE 226868.

Чтобы HDE оставался на своей орбите, его спутнику требовалась масса, превышающая таковую у типичного белого карлика или нейтронной звезды. Более того, это странное мерцание могло возникнуть только из-за небольшого объекта, который мог претерпевать такие быстрые изменения.

Озадаченные, ученые смотрели на свои предыдущие наблюдения и теории, чтобы попытаться определить, что это за объект, но были шокированы, когда нашли свое решение в теории, которую многие считали просто математической фантазией.

Лебедь X-1 расположен на расстоянии 6 070 световых лет от нас, имеет диаметр всего около 32-64 км, массу около 14,8 солнечных и скорость вращения 800 оборотов в секунду.

 Все эти данные соответствуют тому, какой должна быть черная дыра, если бы она находилась в непосредственной близости от HDE 226868. Эти два объекта расположены на расстоянии 0,2 а. е. друг от друга, что позволяет Лебедю откачивать материал из своего спутника, придавая ему форму яйца.

 Было замечено, что материал входит в Лебедя, но в конечном итоге он значительно смещается и «уходит» в сингулярности.

Сингулярность — это точка за горизонтом событий, где, согласно общей теории относительности, пространство-время имеет бесконечную кривизну.

В этой области пространство и время перестают существовать в том виде, как мы их знаем, а потому к ней не применимы действующие законы физики.

Пространство за горизонтом событий особенно в том смысле, что сингулярность является буквально единственным возможным будущим, поэтому все частицы должны двигаться к нему.

Обнаружение

Несмотря на невидимую внутренность, присутствие таких массивных объектов можно обнаружить по их взаимодействию с окружающими объектами, а также светом и другим электромагнитным излучениям (гравитационное линзирование).

Отличить черную дыру от другого объекта можно по соотношению размера к массе, для этого нужно сравнить ее физический радиус с гравитационным радиусом. Массу и расположение черных дыр рассчитывают используя данные о перемещении звезд.

Какая самая большая черная дыра?

Самая большая черная дыра, присутствующая в нашей галактике — это Стрелец A*, ее масса в 4 миллиона раз больше, чем у Солнца. Она находится на расстоянии 25900 световых лет от Земли и должна иметь радиус не менее 12,7 ± 1,1 млн км.

Черная дыра в галактике Андромеды (M81)

Галактика Андромеды, расположенная на расстоянии 2,5 миллиона световых лет от нас, имеет черную дыру, которая составляет 110–230 миллионов масс Солнца. Этот объект значительно больше Стрельца А* в Млечном Пути.

M87*

Измерения массы, опубликованные телескопом Event Horizon в 2019 году, предполагают, что M87* — самая большая сверхмассивная черная дыра в окрестностях Млечного Пути. Ее масса около 6,5 млрд M☉, она расположена на расстоянии 53,5 млн световых лет от Земли.

Вращающийся диск с ионизированным газом окружает черную дыру и приблизительно перпендикулярен релятивистской струе, испускаемой М87*. Диск вращается со скоростью примерно до 1000 км/с и имеет максимальный диаметр 0,12 парсек (25 000 а.е.

). Для сравнения, в среднем Плутон находится в 39 астрономических единицах (0,00019 парсек) от Солнца. M87* — это первая и пока единственная черная дыра, изображение которой мы смогли получить, оно было опубликовано 10 апреля 2019 года.

В квазарах

Массы черных дыр в квазарах можно оценить косвенными методами, что предполагает значительную неточность. Квазар TON 618 является примером объекта с чрезвычайно большой черной дырой, оцененной в 66 млрд солнечных масс. Другие примеры квазаров с оцененными массами черных дыр — APM 08279+5255, с массой 23 млрд M☉; S5 0014+81, с массой 40 миллиардов М☉.

Излучение

Предполагается, что черная дыра излучает разнообразные элементарные частицы, этот гипотетический процесс называется излучением Хокинга.

Излучение Хокинга

Понятие о чёрной дыре как объекте, который ничего не излучает, а может лишь поглощать материю, справедливо до тех пор, пока не учитываются квантовые эффекты. В квантовой теории поля физический вакуум наполнен постоянно рождающимися и исчезающими флуктуациями различных полей (можно сказать «виртуальными частицами»).

В поле внешних сил динамика этих флуктуаций меняется, и если силы достаточно велики, прямо из вакуума могут рождаться пары частица-античастица. Такие процессы происходят и вблизи (но всё же снаружи) горизонта событий чёрной дыры.

При этом возможно, что одна из частиц (неважно какая) падает внутрь чёрной дыры, а другая улетает и доступна для наблюдения.

Источник: https://sci-news.ru/2019/what-are-black-holes/

10 фактов о черных дырах, которые должен знать каждый

Физическая гипотеза чёрной дыры средней массы

Черные дыры — это, пожалуй, самые загадочные объекты Вселенной. Если, конечно, где-то в глубинах не скрываются вещи, о существовании которых мы не знаем и знать не можем, что вряд ли.

Черные дыры — это колоссальная масса и плотность, сжатая в одну точку небольшого радиуса. Физические свойства этих объектов настолько странные, что заставляют ломать голову самых искушенных физиков и астрофизиков.

Сабина Хоссфендер, физик-теоретик, сделала подборку десяти фактов о черных дырах, которые должен знать каждый.

Что такое черная дыра?

Определяющим свойством черной дыры является ее горизонт. Это граница, преодолев которую ничто, даже свет, не сможет вернуться обратно. Если отделенная область становится отделенной навсегда, мы говорим о «горизонте событий».

Если же она только временно отделена, мы говорим о «видимом горизонте». Но это «временно» также может означать, что область будет отделенной гораздо дольше нынешнего возраста Вселенной.

Если горизонт черной дыры является временным, но долгоживущим, разница между первым и вторым расплывается.

Насколько большие черные дыры?

Можно представить горизонт черной дыры как сферу, и ее диаметр будет прямо пропорциональным массе черной дыры. Поэтому чем больше массы падает в черную дыру, тем больше становится черная дыра.

По сравнению со звездными объектами, впрочем, черные дыры крошечные, потому что масса сжимается в очень малые объемы под действием непреодолимого гравитационного давления. Радиус черной дыры массой с планету Земля, например, всего несколько миллиметров.

Это в 10 000 000 000 раз меньше настоящего радиуса Земли.

Радиус черной дыры называется радиусом Шварцшильда в честь Карла Шварцшильда, который впервые вывел черные дыры как решение для общей теории относительности Эйнштейна.

Что происходит на горизонте?

Когда вы пересекаете горизонт, вокруг вас ничего особенного не происходит. Все из-за принципа эквивалентности Эйнштейна, из которого следует, что нельзя найти разницу между ускорением в плоском пространстве и гравитационным полем, создающим кривизну пространства.

Тем не менее наблюдатель вдали от черной дыры, который наблюдает за тем, как кто-то другой падает в нее, заметит, что человек будет двигаться все медленнее и медленнее, подходя к горизонту. Будто бы время вблизи горизонта событий движется медленнее, чем вдали от горизонта.

Однако пройдет некоторое время, и падающий в дыру наблюдатель пересечет горизонт событий и окажется внутри радиуса Шварцшильда.

То, что вы испытываете на горизонте, зависит от приливных сил гравитационного поля. Приливные силы на горизонте обратно пропорциональны квадрату массы черной дыры. Это означает, что чем больше и массивнее черная дыра, тем меньше силы.

И если только черная дыра будет достаточно массивна, вы сможете преодолеть горизонт еще до того, как заметите, что что-то происходит.

Эффект этих приливных сил растянет вас: технический термин, который для этого используют физики, называется «спагеттификация».

В первые дни общей теории относительности считалось, что на горизонте существует сингулярность, но это оказалось не так.

Что внутри черной дыры?

Никто не знает наверняка, но точно не книжная полка.

Общая теория относительности прогнозирует, что в черной дыре сингулярность, место, в котором приливные силы становятся бесконечно большими, и как только вы преодолеваете горизонт событий, вы уже не можете попасть куда-либо еще, кроме как в сингулярность.

Соответственно, ОТО лучше не использовать в этих местах — она попросту не работает. Чтобы сказать, что происходит внутри черной дыры, нам нужна теория квантовой гравитации. Общепризнанно, что эта теория заменит сингулярность чем-то другим.

Как образуются черные дыры?

В настоящее время мы знаем о четырех разных способах образования черных дыр. Лучше всего понимаем связанный со звездным коллапсом. Достаточно большая звезда образует черную дыру после того, как ее ядерный синтез прекращается, потому что все, что уже можно было синтезировать, было синтезировано.

Когда давление, создаваемое синтезом, прекращается, вещество начинает проваливаться к собственному гравитационному центру, становясь все более плотным. В конце концов, оно настолько уплотняется, что ничто не может преодолеть гравитационное воздействие на поверхность звезды: так рождается черная дыра.

Эти черные дыры называются «черными дырами солнечной массы» и наиболее распространены.

Следующим распространенным типом черных дыр являются «сверхмассивные черные дыры», которые можно найти в центрах многих галактик и которые имеют массы примерно в миллиард раз больше, чем черные дыры солнечной массы. Пока доподлинно неизвестно, как именно они формируются.

Считается, что когда-то они начинались как черные дыры солнечной массы, которые в густонаселенных галактических центрах поглощали множество других звезд и росли.

Тем не менее они, похоже, поглощают вещество быстрее, чем предполагает эта простая идея, и как именно они это делают — все еще остается предметом исследований.

Более спорной идеей стали первичные черные дыры, которые могли быть сформированы практически любой массой в крупных флуктуациях плотности в ранней Вселенной. Хотя это возможно, достаточно трудно найти модель, которая производит их, при этом не создавая чрезмерное их количество.

Наконец, есть очень умозрительная идея о том, что на Большом адронном коллайдере могут образовываться крошечные черные дыры с массами, близкими массе бозона Хиггса. Это работает только в том случае, если у нашей Вселенной имеются дополнительные измерения. Пока не было никаких подтверждений в пользу этой теории.

Откуда мы знаем, что черные дыры существуют?

У нас есть много наблюдательных доказательств существования компактных объектов с крупными массами, которые не излучают свет. Эти объекты выдают себя по гравитационному притяжению, например, за счет движения других звезд или газовых облаков вокруг них.

Они также создают гравитационное линзирование. Мы знаем, что у этих объектов нет твердой поверхности.

Это вытекает из наблюдений, потому что вещество, падая на объект с поверхностью, должно вызывать выброс большего числа частиц, чем вещество, падающее сквозь горизонт.

Почему в прошлом году Хокинг сказал, что черные дыры не существуют?

Он имел в виду, что черные дыры не имеют вечного горизонта событий, а только временный кажущийся горизонт (см. пункт первый). В строгом смысле только горизонт событий считается черной дырой.

Как черные дыры испускают излучение?

Черные дыры испускают излучение за счет квантовых эффектов. Важно отметить, что это квантовые эффекты вещества, а не квантовые эффекты гравитации. Динамическое пространство-время коллапсирующей черной дыры меняет само определение частицы.

Подобно течению времени, которое искажается рядом с черной дырой, понятие частиц слишком зависимо от наблюдателя. В частности, когда наблюдатель, падающий в черную дыру, думает, что падает в вакуум, наблюдатель далеко от черной дыры думает, что это не вакуум, а полное частиц пространство.

Именно растяжение пространства-времени вызывает этот эффект.

Впервые обнаруженное Стивеном Хокингом, испускаемое черной дырой излучение называется «излучением Хокинга». Это излучение имеет температуру, обратно пропорциональную массе черной дыры: чем меньше черная дыра, тем выше температура. У звездных и сверхмассивных черных дыр, которые мы знаем, температура значительно ниже температуры микроволнового фона и поэтому не наблюдается.

Что такое информационный парадокс?

Парадокс потери информации обусловлен излучением Хокинга. Это излучение сугубо термическое, то есть случайно и из определенных свойств имеет только температуру. Излучение само по себе не содержит никакой информации о том, как сформировалась черная дыра.

Но когда черная дыра испускает излучение, она теряет массу и сокращается. Все это совершенно не зависит от вещества, которое стало частью черной дыры или из которого она образовалась. Выходит, зная только конечное состояние испарения нельзя сказать, из чего сформировалась черная дыра.

Этот процесс «необратим» — и загвоздка в том, что в квантовой механике нет такого процесса.

Выходит, испарение черной дыры несовместимо с квантовой теории, известной нам, и с этим нужно что-то делать. Каким-то образом устранить несогласованность. Большинство физиков считают, что решение состоит в том, что излучение Хокинга должно каким-то образом содержать информацию.

Что предлагает Хокинг для решения информационного парадокса черной дыры?

Идея состоит в том, что у черных дыр должен быть способ хранить информацию, который до сих пор не приняли. Информация хранится на горизонте черной дыры и может вызывать крошечные смещения частиц в излучении Хокинга.

В этих крошечных смещения может быть информация о попавшей внутрь материи. Точные детали этого процесса в настоящее время не определены. Ученые ждут более подробного технического документа от Стивена Хокинга, Малькома Перри и Эндрю Строминджера.

Говорят, он появится в конце сентября.

На данный момент мы уверены, что черные дыры существуют, знаем, где они находятся, как образуются и чем станут в итоге. Но детали того, куда девается поступающая в них информация, до сих пор представляют одну из самых больших загадок Вселенной.

Источник: https://Hi-News.ru/science/10-faktov-o-chernyx-dyrax-kotorye-dolzhen-znat-kazhdyj.html

Черные дыры. Факты и теория

Физическая гипотеза чёрной дыры средней массы

Черные дыры — одни из самых странных и увлекательных тел во Вселенной. Они являются объектами с чрезвычайно высокой плотностью. И обладают таким сильным гравитационным притяжением, что даже свет не может убежать от их чудовищных объятий.

Альберт Эйнштейн впервые предсказал существование черных дыр в 1916 году в своей общей теорией относительности. Термин «черная дыра» был придуман в 1967 году американским астрономом Джоном Уилером. Впервые был использован в 1971 году.

Существует три типа черных дыр: обычные черные дыры, сверхмассивные черные дыры и промежуточные черные дыры.

Обычные черные дыры. Небольшие, но смертельные

Когда звезда сжигает свое последнее топливо, она сильно уменьшается в размерах. Небольшие звезды, имеющие массы примерно в три раза больше массы Солнца, превращаются в нейтронные звезды или белые карлики. Но когда коллапсирует звезда побольше, она продолжает сжиматься и создает обычную черную дыру.

Черные дыры, образованные коллапсом отдельных звезд относительно невелики. Но имеют невероятную плотность. Такой объект содержит три массы Солнца в области размером с небольшой город. Такая плотность материи приводит к возникновению колоссального гравитационного поля. Черные дыры поглощают пыль и газ из пространства вокруг себя. И поэтому растут в размерах.

Согласно данным исследования Гарвардско-Смитсоновского Центра астрофизики, наша галактика Млечный Путь содержит несколько сотен миллионов черных дыр.

Супермассивные черные дыры — рождение гигантов

Маленьких черных дыр достаточно много во Вселенной. Однако доминируют в пространстве дыры побольше. Супермассивные черные дыры в миллионы или даже миллиарды раз тяжелее, чем Солнце. Но имеют радиус, близкий к радиусу ближайшей звезды к Земле. Считается, что такие черные дыры лежат в центре почти каждой галактики, включая Млечный Путь.

Ученые пока до конца не определились, как именно возникают такие крупные черные дыры. Как только они рождаются, они, возможно, начинают набирать массу из пыли и газа вокруг себя. То есть того материала, который изобилует в центре галактик. И это позволяет им вырастать до огромных размеров.

Супермассивные черные дыры могут быть результатом слияния сотен или тысяч небольших черных дыр. Большие газовые облака также могут быть вовлечены в этот процесс. Они позволяют черным дырам быстро наращивать массу. Третий вариант — крах звездного кластера, когда группа звезд коллапсирует одновременно.

Промежуточные черные дыры — застрявшие посередине

Ученые когда-то считали, что черные дыры имеют только малые и большие размеры. Но недавние исследования показали возможность существования средних или промежуточных черных дыр (IMBH).

Такие тела могут образовываться, когда звезды в кластере сталкиваются по цепной реакции.

Некоторые из этих звезд, образовавшихся в одной и той же области пространства, в конечном итоге могут коллапсировать вместе в центре галактики и создать сверхмассивную черную дыру.

В 2014 году астрономы обнаружили объект, оказавшийся черной дырой промежуточной массы. Он находится в рукаве спиральной галактики.

Теория черных дыр — как они работают

Черные дыры невероятно массивны. Но при этом занимают небольшую область пространства. Между массой и гравитацией существует прямая связь. Это означает, что они обладают чрезвычайно сильным гравитационным полем. Практически ничто не может уйти от них. В классической физике даже свет, попадая в черную дыру, не может покинуть ее.

Такое сильное притяжение создает проблему наблюдения, когда дело доходит до черных дыр. Ученые просто не могут «видеть» их так, как они могут видеть звезды и другие объекты в космосе.

Для обнаружения этих объектов ученые полагаются на излучение, которое испускается, когда пыль и газ поглощается черной дырой. Супермассивные черные дыры, лежащие в центре галактики, могут оказаться окутаны пылью и газом, находящимися вокруг них.

Это может блокировать наблюдение контрольных выбросов.

Иногда, когда материя двигается к черной дыре, она рикошетом покидает горизонт событий и вылетает наружу, а не втягивается внутрь. Создаются яркие струи материала, движущегося с практически релятивистскими скоростями. Хотя сама черная дыра остается невидимой, эти мощные струи можно увидеть с больших расстояний.

Горизонт событий

Черные дыры имеют три «слоя» — внешний, горизонт событий и сингулярность.

Горизонт событий черной дыры — это то место, где свет теряет способность к «бегству». Когда частица пересекает горизонт событий, она уже не может покинуть черную дыру. На горизонте событий гравитация постоянна.

Внутренняя область черной дыры, где содержится ее масса, известна как сингулярность. Это единственная точка в пространстве — времени, где сосредоточена масса черной дыры.

По представлениям классической механики и физики ничто не может выйти из черной дыры. Однако, когда к уравнению добавляется квантовая механика, все немного меняется. В квантовой механике для каждой частицы имеется античастица. Это частица с одинаковой массой и противоположным электрическим зарядом. Когда они встречаются, пара частица-античастица может аннигилировать.

Если пара частица-античастица создается вне досягаемости горизонта событий черной дыры, одна из частиц может упасть в черную дыру, а другая быть вытолкнута. В результате масса черной дыры уменьшается. Этот процесс называется излучением Хокинга. И черная дыра может начать распадаться, что отвергается классической механикой.

Ученые все еще работают над тем, чтобы создать уравнения, с помощью которых можно было понять, как функционируют черные дыры.

Сияющий свет двойных черных дыр

В 2015 году астрономы, использующие гравитационно-волновую обсерваторию лазерного интерферометра (LIGO), впервые обнаружили гравитационные волны. С тех пор с помощью этого инструмента наблюдалось несколько других подобных инцидентов. Гравитационные волны, замеченные LIGO, возникли от слияния небольших черных дыр.

Наблюдения LIGO также дают представление о направлении вращения черной дыры. Когда пара черных дыр вращается по спирали вокруг друг друга, они могут вращаться в одном направлении. Или направления вращения могут быть совершенно разными.

Существует две теории о том, как образуются бинарные черные дыры. Первая предполагает, что они образовались примерно в одно и то же время, от двух звезд. Они могли родиться вместе и погибнуть примерно одновременно. Звезды-компаньоны имели бы похожее направление вращения. Поэтому черные дыры, которые они оставили, тоже вращались бы подобным образом.

По второй модели черные дыры в звездном кластере опускаются в его центр и соединяются. У этих компаньонов были бы случайные ориентации спина по сравнению друг с другом. Наблюдения черных дыр с различной ориентацией спина, произведенные с помощью LIGO, дают более убедительные доказательства этой теории образования.

Интересные факты о черных дырах

Ваша смерть наступит прежде, чем вы достигнете сингулярности. Исследование 2012 года предполагает, что квантовые эффекты приведут к тому, что горизонт событий будет действовать как стена огня, мгновенно сжигая вас до смерти.

Черные дыры не «засасывают». Всасывание вызвано выталкиванием чего-то в вакуум, которым массивная черная дыра определенно не является. Вместо этого объекты просто попадают в них.

Первым объектом, считающимся обнаруженной черной дырой, является Cygnus X-1. С В 1971 году ученые обнаружили радиоизлучение, исходящие от Cygnus X-1. Был обнаружен массивный скрытый объект, который был идентифицирован как черная дыра.

Cygnus X-1 был предметом товарищеского спора 1974 года между Стивеном Хокингом и физиком-теоретиком Кипом Торном. Последний утверждал, что этот источник был черной дырой. В 1990 году Хокинг признал свое поражение.

Миниатюрные черные дыры могли образоваться сразу после Большого взрыва. Быстро расширяющееся пространство, возможно, сжало некоторые свои области в крошечные плотные черные дыры. Они были менее массивны, чем Солнце.

Если звезда проходит слишком близко к черной дыре, она сможет быть поглощена ей. По оценкам астрономов, в Млечном Пути от 10 миллионов до миллиарда черных дыр с массами, примерно в три раза превышающими массу Солнца.

Теория струн предполагает больше типов массивных гигантских черных дыр, чем обычная классическая механика.

Черные дыры являются потрясающим материалом для научно-фантастических книг и фильмов. Фильм Интерстеллар в значительной степени полагался на консультации теоретического физика Кипа Торна.

Это позволило привнести настоящую науку в продукт Голливуда.

Фактически, работа со спецэффектами для блокбастера привела к улучшению научного понимания того, как могут выглядеть далекие миры, когда они расположены вблизи быстро вращающейся черной дыры.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: https://alivespace.ru/chernye-dyry-fakty-i-teoriya/

Вначале были дыры. Что если первые черные дыры появились задолго не только до звезд, но даже первых атомов во Вселенной

Физическая гипотеза чёрной дыры средней массы

Создание «классической» черной дыры требует огромной массы — эти объекты возникают при схлопывании массивных звезд.

Но не исключено, считают некоторые астрофизики, что есть черные дыры, которые появились в самом начале Вселенной, задолго не только до звезд, но даже до первых атомов.

Недавно в Физическом институте РАН выступал один из ведущих специалистов по этим древнейшим пожирателям материи, британец Бернард Карр, который рассказывал о том, как первичные черные дыры могут объяснить формирование галактик и темную материю.

Карр — астрофизик, написавший ряд ключевых работ по физике первичных черных дыр, Стивен Хокинг был его соавтором и наставником. Концепцию первичных черных дыр разрабатывали как британские, так и советские космологи — в своей лекции Бернард Карр отметил работы Игоря Новикова и Якова Зельдовича в одном ряду с публикациями Хокинга.

Дыры вместо материи

Черная дыра гипотетически может быть массой с астероид средней величины. Но в таком случае она слишком мала для сколько-нибудь заметного влияния на движение других небесных тел, если только не рассматривать маловероятный сценарий ее столкновения с планетой.

Такую черную дыру нельзя увидеть, так как хокинговское излучение (оно тем слабее, чем больше масса) уже слишком мало, а масса еще недостаточна велика для активного поглощения вещества и появления яркого аккреционного диска.

Невидимая, но имеющая массу первичная черная дыра является, таким образом, прекрасным кандидатом на роль темной материи — той самой, которую пока не удается поймать детекторами на Земле.

Черная дыра в системе Лебедь X-1, рисунок. Относительно этого объекта в 1974 году было заключено пари между Стивеном Хокингом и американским физиком Кипом Торном: Хокинг ставил на то, что в этой системе нет черной дыры. Свою неправоту ему пришлось признать в 1990-м (и купить коллеге годовую подписку на журнал Penthouse). Иллюстрация: NASA / CXC / M. Weiss

Отвечая на вопрос журналиста «Чердака» о том, насколько удачным является такое объяснение, Карр сказал: «В мире гораздо больше людей, которые считают темную материю состоящей из элементарных частиц — вимпов (от WIMP — weakly interacting massive particles), например.

Проблема в том, что поиски таких частиц ведутся уже сорок лет: это и эксперименты на коллайдерах, и поиск при помощи детекторов. И пока мы ничего не нашли.

Я, как астрофизик, склонен считать, что первичные черные дыры могут быть удачной альтернативой, хотя у этой гипотезы есть другая проблема: оценки показывают, что лишь малая часть массы Вселенной могла превратиться в такие объекты».

Действительно, построенные специально для обнаружения вимпов различные детекторы не добились никаких результатов. Возможно, вимпы не просто взаимодействуют с обычной материей только за счет слабого взаимодействия (как нейтрино), но еще и имеют такие характеристики, что построенные установки их просто не видят. И с каждым новым сообщением «вимпов не найдено» скептицизм физиков растет.

В 1994 году трое российских астрофизиков — Павел Иванов, Павел Насельский и Игорь Новиков — представили работу с оценкой числа первичных черных дыр с массой порядка одной десятой массы Солнца. Ученые указали, что при определенных условиях таких объектов могло бы образоваться достаточно много, чтобы объяснить эффект, который принято списывать на темную материю.

ПЧД могут по меньшей мере вносить заметный вклад в невидимую массу Вселенной. Доля темной материи, по сегодняшним представлениям, составляет около 25% «неучтенной» массы мироздания, а на обычное вещество приходится в пять раз меньше.

Ограничения и гравитационные волны

Ряд астрофизических наблюдений, сделанных за последние 20 лет, позволил ограничить простор для фантазий теоретиков.

Благодаря, например, неудавшимся попыткам найти ПЧД по отклонению ими лучей света от других небесных тел, ученые теперь исключают то, что первичные черные дыры могут иметь массу в диапазоне от Луны до коричневых карликов (от 1025 до 1033 граммов).

Другие наблюдения, уже за распространением излучения от гамма-всплесков, позволили сделать вывод о том, что и ПЧД массой от 1017 до 1020 граммов — это уже типичный крупный астероид, как (291) Алиса, — тоже не должны существовать в значимых количествах.

Наконец, ПЧД массой от десяти масс Солнца и выше наверняка бы проявили себя по воздействию на звезды, а объекты меньше 1013 граммов (челябинский астероид и тунгусский объект) попросту должны были испариться еще в прошлом: чем меньше масса, тем сильнее хокинговское излучение и тем быстрее черная дыра теряет массу. Такой процесс, очевидно, самоускоряется и заканчивается взрывом. То, что мы подобных вспышек не наблюдаем, указывает на отсутствие и малых ПЧД.

Гамма-всплеск — «выгоревшая» звезда, в которой остались преимущественно тяжелые элементы (см. состав по центру), схлопывается в черную дыру и производит вспышку гамма-лучей. Иллюстрация: National Science Foundation

«На сегодня выделяют три окна, три диапазона, в которых возможно существование первичных черных дыр.

Это примерно соответствует массе (небольших) астероидов, массе планетоидов и массам в районе нескольких солнечных», — рассказывает Бернард Карр.

Выявление «запрещенных» областей астрономами вело, по словам ученого, к некоторому охлаждению интереса астрофизиков, однако затем появлялись новые данные, которые приводили к повторному всплеску исследовательской активности.

В частности, первое наблюдение гравитационных волн в истории — 14 сентября 2015 года — показало слияние двух черных дыр с массами около тридцати масс Солнца каждая.

Эти массы в принципе могли бы быть и у обычной черной дыры, однако большая часть известных нам черных дыр легче.

В своей лекции Карр показал слайд с распределением масс черных дыр, найденных обсерваторией LIGO, и типичные значения массы там выше, чем в выборке из черных дыр, которые открыли иными методами.

Массы известных черных дыр. Изображение: Caltech/MIT/LIGO Laboratory

«Это не уверенное доказательство, но это свидетельствует в пользу предположения о том, что эти черные дыры были именно первичными, — сказал ученый. — Я склонен в это верить, хотя, конечно, занимаюсь первичными черными дырами уже сорок лет и тут отличаюсь от большинства физиков. Те, кто занимается чем-то иным, думают иначе».

Первопричина всего

По словам Карра, с первичными черными дыра связана еще одна интересная гипотеза: именно ими могут быть сверхмассивные черные дыры в ядрах галактик. Это бы объяснило, откуда же вообще взялись подобные гиганты массой до миллиарда масс Солнца. В рамках этой гипотезы ПЧД играют ключевую роль в формировании галактик.

«Не галактики сформировали черные дыры, а черные дыры позволили образоваться галактикам», — говорит Карр.

Сверхмассивные черные дыры наиболее заметны — за счет свечения пожираемого ими вещества. Эти объекты интересны сразу несколькими особенностями:

  • очень большой массой, которую не так просто объяснить простым слиянием черных дыр, возникших при коллапсе звезд;
  • невероятной эффективностью переработки массы падающего вещества в излучаемую энергию — около 50%. Для сравнения: термоядерная реакция переводит в излучение всего 0,7% массы водорода и примерно столько же массы урана-235 превращается в энергию внутри ядерных реакторов;
  • неочевидной плотностью. Интуиция подсказывает, что внутри черной дыры плотность вещества должна быть больше, чем, скажем, внутри нейтронной звезды, с ее десятками тонн в кубическом сантиметре. Но на самом деле вычисления показывают, что за горизонтом событий сверхмассивной черной дыры вещество имеет плотность, сопоставимую с плотностью воды. Это объясняется линейной зависимостью радиуса черной дыры от массы, в то время как у «нормальных» шарообразных тел радиус растет лишь пропорционально кубическому корню от массы.

Общепринятой теории формирования сверхмассивных черных дыр нет — они слишком велики, чтобы получиться при коллапсе даже самых больших и тяжелых из известных нам звезд.

Гипотетически можно рассмотреть, конечно, аномально большие звезды с массой в десятки или даже сотни тысяч масс Солнца, но ничего подобного астрономы пока не видели.

Галактика М31, она же туманность Андромеды — одна из ближайших к нам галактик; в ее ядре находится черная дыра с массой около 140 миллионов солнечных. Adam Evans / Flickr

А вот первичные черные дыры в любом из сценариев своего появления не ограничены массой звезд. Все теоретические модели предполагают, что ПЧД возникают сразу после Большого взрыва, причем в период, когда не было даже отдельных протонов, а вся Вселенная представляла собой кварк-глюонную плазму.

В своей статье Карр и Хокинг указывали, что появившиеся в самом начале черные дыры должны были быть очень легкими (вплоть до ста килограммов), однако затем они активно поглощали окружающее их плотное вещество и достигали значений, характерных для сверхмассивных черных дыр в миллиард раз тяжелее Солнца.

Даже если их нет, их стоило бы придумать

ПЧД по сей день остаются гипотетическими объектами, отчасти пересекаясь с такой экзотикой, как космические струны, доменными стенками и даже червоточинами.

Космические струны — гипотетический одномерный объект с очень высокой плотностью.

Доменная стенка — поверхность, разделяющая разные части Вселенной, — возникает в моделях мультивселенных.

Червоточина — «тоннель», соединяющий две точки пространства напрямую, прообраз «порталов» из научной и не очень научной фантастики. Все это гипотетически возможно, однако доказательств в пользу существования таких объектов практически нет.

Определенные модификации гипотезы ПЧД допускают существование подобных объектов и даже разделение Вселенной на участки с разными физическими законами. Это, по словам Карра, уже приносит пользу физике, поскольку, именно оттолкнувшись от рассуждения про первичные черные дыры, можно прийти к теориям, объясняющим поведение Вселенной и классических черных дыр.

Рассмотрение сугубо гипотетических объектов требует развития математического аппарата и приводит к появлению новых идей.

Так, поиски теплорода, вещества, которое в XVIII столетии связывали с теплотой, подтолкнули развитие термодинамики: отталкиваясь от теплорода, Сади Карно разработал теорию тепловых машин.

А охота за светоносным эфиром, которая также была безуспешной, помогла развить волновую теорию света. Так что, даже если первичных черных дыр не обнаружится, эта идея все равно принесет свои плоды.

 Алексей Тимошенко

Источник: https://tass.ru/sci/6820034

Физическая гипотеза чёрной дыры средней массы

Физическая гипотеза чёрной дыры средней массы

Определение 1

Черная дыра средней массы – это черная дыра, масса которой находится в промежутке между массой черной дыры звездной массы и массой сверхмассивной черной дыры.

Черные дыры средней массы относят к промежуточному типу данных объектов, процесс увеличения которых проходит за счет аккреции вещества расположенных рядом с ними небесных тел (скоплений газа).

Черные дыры

Определение 2

Черной дырой принято называть пространственно-временную область, которая имеет горизонт событий. Это область с сильным гравитационным полем, которую не может покинуть никакая материя. (Квантовые эффекты не учитываются).

Первые предсказания наличия подобных объектов было сделано в XVIII веке Дж. Мичеллом. Ученый пролагал, что при сжимании нашего Солнца до диаметра в шесть километров свет не может его покинуть.

Следуя за Лапласом, опираясь на законы Ньютона легко получить, что для некоторого радиуса $r_g$, равного

$r_g=\frac{2Gm}{c2} \approx 2,95 (\frac{m}{M_c}) (км)(1),$

где $G$ — гравитационная постоянная; $c$ — скорость света; $m$ — масса тела; $M_c$ — масса Солнца.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Никакая частица не способна покинуть тело массы $m$.

Позднее наличие черных дыр было предсказано Оппенгеймером и Снайдером, исходя из положений общей теории относительности Эйнштейна. Ученые предположили, что данные объекты возникают при гравитационном сжатии вещества.

Современная наука предполагает, что черные дыры могли возникнуть:

  • в начале формирования Вселенной из первоначальных отклонений в распределении плотности вещества;
  • как результат эволюции звезд и их скоплений.

При одновременном выполнении двух условий:

  1. ядро звезды, начавшей коллапс, имеет большую массу;
  2. кинетическая энергия сжатия велика;

с приближением к ядерной плотности процесс имплозии может замедляться, но не способен остановиться. Силы гравитации с течением времени все больше превалируют, проходит полный коллапс. Возникающую при этом процессе систему называют черной дырой.

Предполагают, что черные дыры способны возникать в результате следующих процессов:

  • Непосредственно в результате гравитационного коллапса звезды, имеющей плотное ядро в черную дыру.
  • В результате процесса, состоящего из двух этапов. В этом случае происходит коллапс звезды в горячую нейтронную звезду. После этого идет охлаждение нейтронной звезды, и она коллапсирует в черную дыру.
  • В результате многоступенчатого процесса, при котором на первом этапе возникает устойчивая нейтронная звезда. Эта звезда непрерывно поглощает вещества около себя. Масса звезды увеличивается до значения, которое требуется для начала коллапса.

Непосредственное наблюдение черной дыры в настоящее время не представляется возможным. Ее можно найти только по косвенным эффектам, которые связаны с наличием у дыры сильного поля гравитации. Так черная дыра способна оказывать существенное воздействие на движение окружающего ее вещества и распространение излучения.

Замечание 1

Ученые считают, что некоторые черные дыры могут вращаться.

Не смотря на то, что теоретически черные дыры исследуются давно, их существование подтверждено только в 2015 году. К этому времени имеется большое число представителей, которые претендуют на роль черной дыры.

Один из видов классификации черных дыр

В зависимости от их массы (условно) черные дыры разделяют на три вида:

  1. Черные дыры, имеющие массу звезды. Эти объекты возникли как результат коллапса звезды после прекращения в ее недрах термоядерных реакций. Наименьшая масса звезды, которая может породить черную дыру, составляет 1,5 – 3 массы Солнца. Большая масса такой звезды не дает ей возможность превратиться в белого карлика или нейтронную звезду. Масса этого типа черных дыр не превышает 200 – 300 масс Солнца.
  2. Сверхмассивные черные дыры. Это космические объекты, имеющие массы $105 – 10{10}M_c$. Сверхмассивные черные дыры обладают невысокой плотностью вещества и слабыми приливными силами. Они находятся предположительно в активных ядрах крупных галактик.
  3. Между первыми двумя типами черных дыр находятся черные дыры средней массы. Полагают, что эти черные дыры увеличили свою массу, поглощая вещество объектов, которые расположены около них. Черные дыры средней массы имеют массу превышающую массу Солнца в несколько тысяч раз.

Наиболее распространенными ученые считают черные дыры звездной массы и сверхмассивные черные дыры.

Механизмы возникновения черной дыры средней массы

Считается, что черная дыра средней массы не может возникнуть в результате коллапса звезды напрямую, поскольку у них масса достаточно велика.

Исследователи считают, что возникновение черных дыр средней массы может происходить в результате:

  • объединения двух и более черных дыр первого типа;
  • возникновения на ранних этапах формирования Вселенной;
  • зарождения в ядре квазизвезды;
  • при столкновениях звезд большой массы с последующим коллапсом.

Замечание 2

Большинство ученых считает, что механизм появления черных дыр средней массы пока не выяснен.

Кандидат в черные дыры средней массы

В журнале Nature в 2017 году сообщалось, что в середине звездного скопления 47 Тукана (NGC 104) обнаружили кандидата на роль черной дыры средней массы. По оценкам ученых масса данной черной дыры 2200 $M_c$.

Исследованное звездное скопление находится в 13 тысячах световых лет от нашей планеты в созвездии Тукан. Возраст скопления порядка двенадцати миллиардов лет. Звезды скопления отличаются большой яркостью.

Проводя поиск черной дыры в данном звездном скоплении, исследователи сделали анализ динамики светящихся объектов всего скопления. Для этого использовались данные наблюдений радиообсерватории Паркса (Австралия). Была построена модель задачи из N гравитирующих тел. Вычисления показали, что в середине NGC 104 должна присутствовать черная дыра средней массы.

Удостовериться ученые решили, рассматривая пульсары созвездия. Была выдвинута гипотеза о том, что при наличии в центре NGC 104 черной дыры пульсары рядом с ней иметься не должны и наоборот. Наблюдения показали, что пульсаров в центре скопления нет.

Роль черных дыр промежуточной массы достоверно не известна.

Источник: https://spravochnick.ru/fizika/fizicheskie_gipotezy/fizicheskaya_gipoteza_chernoy_dyry_sredney_massy/

Booksm
Добавить комментарий