Энтропия вселенной

Возрастающая энтропия Вселенной

Энтропия вселенной

Второй закон термодинамики — один из тех загадочных законов природы, который возникает из ее фундаментальных правил. Он говорит о том, что энтропия, мера беспорядка во Вселенной, всегда должна увеличиваться в любой замкнутой системе.

Но как возможно, что наша Вселенная сегодня, которая выглядит организованной и упорядоченной с помощью планетных систем, галактик и сложной космической структуры, каким-то образом находится в состоянии с более высокой энтропией, чем сразу после Большого взрыва, ведь кажется, что все должно быть наоборот.

Термодинамическая стрела времени подразумевает, что энтропия всегда возрастает, поэтому сегодня она больше, чем в прошлом.

И все же, если мы думаем об очень ранней Вселенной, она, безусловно, выглядит как состояние с высокой энтропией! Вообразите это: море частиц, включая вещество, антивещество, глюоны, нейтрино и фотоны, все вокруг несутся с энергиями в миллиарды раз выше, чем даже БАК может получить сегодня.

Их было так много — всего около 1099 (здесь и далее степень) и все они находились в области размером с футбольный мяч. Прямо в момент Большого взрыва этот крошечный регион с этими чрезвычайно энергичными частицами вырастет во всю нашу наблюдаемую Вселенную в течение следующих 13,8 миллиардов лет.

Совершенно очевидно, что сегодня Вселенная намного холоднее, больше, более структурирована и однородна. Но мы можем фактически количественно оценить энтропию Вселенной в оба момента, в момент Большого взрыва и сегодня, с точки зрения постоянной Больцмана, kb.

В момент Большого взрыва почти вся энтропия была обусловлена ​​излучением, а общая энтропия Вселенной составляла S = 1088 kb.

С другой стороны, если сегодня мы вычислим энтропию Вселенной, она будет примерно в четыре миллиарда раз больше: S = 10103 kb.

В то время как оба эти числа кажутся большими, первое число определенно имеет низкую энтропию по сравнению с последним: это всего лишь 0,0000000000001% от него!

Однако что важно иметь в виду, когда мы говорим об этих цифрах. Когда вы слышите такие термины, как «мера беспорядка», это на самом деле очень плохое описание того, что такое энтропия. Вместо этого представьте, что у вас есть любая система, которая вам нравится: материя, излучение, что угодно.

Предположительно, там будет закодирована некоторая энергия, будь то кинетическая, потенциальная, энергия поля или любой другой тип энергии. Что на самом деле измеряет энтропия, так это количество возможных вариантов состояния вашей системы.

Система, созданная в начальных условиях слева и позволяющая развиваться, станет системой справа спонтанно, приобретая при этом энтропию.

Если ваша система имеет, скажем, холодную часть и горячую часть, вы можете организовать ее меньшим количеством способов, чем если бы она была с одинаковой температурой.

Система, слева вверху, является системой с более низкой энтропией, чем система справа.

Фотоны на космическом микроволновом фоне сегодня имеют практически ту же энтропию, что и при рождении Вселенной. Вот почему говорят, что Вселенная расширяется адиабатически, что означает постоянную энтропию.

Хотя мы можем смотреть на галактики, звезды, планеты и т. д.  и удивляться тому, насколько упорядоченными или беспорядочными они кажутся, их энтропия незначительна.

Так что же вызвало это огромное увеличение энтропии?

Ответ — черные дыры. Если вы подумаете обо всех частицах, которые образуют черную дыру, то получите огромное их количество. Попадая в черную дыру, вы неизбежно получаете сингулярность. И число состояний прямо пропорционально массам частиц в черной дыре, поэтому, чем больше черных дыр вы сформируете (или чем массивнее будут черные дыры), тем больше энтропии вы получаете во Вселенной.

Одна только сверхмассивная черная дыра в центре Млечного Пути имеет энтропию S = 1091 kb, что примерно в 1000 раз больше, чем у всей Вселенной при Большом Взрыве. Учитывая количество галактик и массу черных дыр в целом, общая энтропия сегодня достигла значения S = 10103 kb.

И все это будет только ухудшаться! В далеком будущем будет образовываться все больше и больше черных дыр, и большие черные дыры, которые существуют сегодня, будут продолжать расти в течение следующих 1020 лет.

Если бы мы превратили всю вселенную в черную дыру, мы бы достигли максимальной энтропии примерно S = 10123 kb, или в 100 квинтиллионов раз больше, чем энтропия сегодня.

Когда черные дыры распадутся в еще больших временных масштабах — примерно до 10100 лет — эта энтропия останется почти постоянной, поскольку излучение черного тела (излучение Хокинга), создаваемое распадающимися черными дырами, будет иметь такое же количество возможных состояний, что и ранее существовавшая черная дыра.

Так почему же в ранней Вселенной была настолько низкая энтропия? Потому что там не было черных дыр. Энтропия S = 1088 kb по-прежнему чрезвычайно велика, но это энтропия всей Вселенной, которая почти исключительно закодирована в остатке излучения (и, в несколько меньшей степени, нейтрино) от Большого взрыва.

Поскольку объекты, которые мы видим, когда смотрим на Вселенную, такие как звезды, галактики и т. д., имеют незначительную энтропию по сравнению с этим оставшимся фоном, легко обмануть себя, полагая, что энтропия существенно изменяется в виде структурных форм, но это всего лишь совпадение, а не причина.

Если бы не было таких объектов, как черные дыры, энтропия Вселенной была бы почти постоянной на протяжении последних 13,8 миллиардов лет! То первичное состояние действительно имело значительную энтропию; просто у черных дыр ее намного больше.

Ставьте лайки и подписывайтесь на наш каналAB-News Новости науки

Источник: https://zen.yandex.ru/media/id/5ab8d8139f43471dc7f3559e/5d6b841435c8d800add16491

Энтропия вселенной

Энтропия вселенной

Энтропия вошла в науку в XIX веке и заняла в ней особое место. Появилась эта физическая величина в теории тепловых машин. Но довольно быстро границы этой теории стали для нее узки, и она вошла в другие части физики, в первую очередь в теорию излучения. Позднее энтропия вошла и в соседние с физикой науки:

  • космологию,
  • биологию,
  • химию,
  • теорию информации.

Энтропия как физическая величина

Энтропию относят к наиболее важным физическим понятиям. В качестве физической величины ее ввел Р. Клаузиус в 1865 году.

Потребность введения энтропии вызвана:

  • необходимостью замены количества теплоты на некоторую функцию состояния;
  • поиском параметра, который был бы сопряжен температуре, что позволило завершить этап формирования понятийного аппарата термодинамики.

Поясним пункт 2. Можно сказать, что все термодинамические параметры формируют пары (пары сопряженных величин). Например, объем и давление. Эти величины входят в определение работы:

$dA=pdV$ .

Так как количество теплоты можно записать как:

$\delta Q=TdS$,

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

то по аналогии с сказанным выше, логично предположить, что энтропия и температура являются сопряженными. В этой паре один параметр зависит от объема, например, энтропия, а температура от объема не зависит.

Энтропию вводит второе начало термодинамики. Зоммерфельд формулировал второе начало термодинамики следующим образом:

Любая система в термодинамике может быть описана функцией состояния, которую называют энтропией. Энтропию находят так:

  1. Систему переводят из некоторого начального состояния в избранное конечное состояние посредством череды равновесных состояний.
  2. Находятся все порции тепла, которые подводились в проводимых процессах ($\delta Q$).
  3. Данные порции тепла делятся на абсолютную температуру ($T$).
  4. Полученные отношения складываются.

При необратимых процессах энтропия замкнутой системы увеличивается.

Так, энтропию, а вернее ее изменение, для обратимого процесса, можно определить следующим образом:

Определение 1

Изменение энтропии в обратимом процессе равно:

$\Delta S=\sum\limits_i {\frac{\Delta Q_{i}}{T_{i}}\left( 1 \right).} $

Для непрерывного процесса:

$\Delta S=\int\limits_ab {\frac{\delta Q}{T}\left( 2 \right).} $

Замечание 1

Второе начало термодинамики осуществляет ввод энтропии формально, как некоторую функцию состояния, при этом физический смысл энтропии не раскрывается.

Термодинамика не в состоянии установить связь энтропии с внутренним состоянием и молекулярными свойствами исследуемой системы, и не может показать способ установления данной связи.

Свойства и физический смысл энтропии раскрывает статистическая физика, когда рассматривает микросостояния вещества. Л. Больцман первым предположил, что термодинамическая вероятность связана с энтропией. Это предположение в виде формулы записал Планк:

$S=k ln⁡(W) (3),$

где $k$ – постоянная Больцмана; $W$ – термодинамическая вероятность (число способов реализации макросостояния при помощи микросостояний).

Смысл энтропии в том, что она является мерой беспорядка в термодинамической системе. Большее количество микросостояний, которое осуществляет макросостояние, соответствует большей энтропии.

Если система находится в состоянии термодинамического равновесия, что соответствует наиболее вероятному состоянию системы, количество микросостояний наибольшее, энтропия в этом случае максимальна.

Теория тепловой смерти Вселенной

Р. Клаузиус второе начало термодинамики сформулировал следующим образом:

  • энергия Мира является неизменной;
  • при этом энтропия Мира стремится к максимуму.

Данная формулировка означает то, что Вселенная стремится в состояние термодинамического равновесия (это состояние названо тепловой смертью), этому состоянию соответствует полный хаос в системе.

Представление Клаузиуса о тепловой смерти Вселенной несостоятельно, так как в этой области законы термодинамики не работают. Термодинамические положения применимы к термодинамическим системам.

Один из признаков такой системы – это аддитивность некоторых ее параметров, например, энергии.

Так, при разбиении системы, находящейся в состоянии равновесия на отдельные равновесные макроскопические части, энергию всей системы можно найти как сумму энергий ее частей. При этом энергия системы будет пропорциональна ее объему.

Данного признака у Вселенной нет, поскольку ее гравитационная энергия не является пропорциональной объему, так как силы гравитации дальнодействующие и неэкранируемые. Суммарная энергия Вселенной опять же не пропорциональна объему и в этой связи, не аддитивна.

Еще следует заметить, что Вселенная не пребывает в стационарном состоянии, происходит ее расширение. Из сказанного сделаем вывод о том, что говорить об энтропии Вселенной в термодинамическом смысле нельзя, так как Вселенная — это не термодинамическая система.

Энтропия объектов Вселенной

Энтропией Вселенной считают величину, определяющую степень беспорядка и ее тепловое состояние.

Во Вселенной можно выделять подсистемы, которые можно описывать как термодинамические системы, например:

  • такие компактные объекты, как звезды, планеты и т.д.;
  • реликтовое излучение (тепловое излучение температура которого составляет 2,73 К).

Сделанные вычисления показали, что суммарная энтропия всех компактных объектов, которые смогли наблюдать, очень маленькая, если сравнить ее с энтропией реликтового излучения. Причиной этому может служить то, что количество реликтовых фотонов огромно. Каждому атому во Вселенной соответствует $109$ фотонов.

Современные оценки суммарной энтропии доли Вселенной, доступной для исследования, дают величину порядка $10{90} k$. Сравним эту цифру с энтропией вещества черной дыры такой же части Вселенной, которая составит $10{124} k$. Эти цифры говорят о том, что наша часть Вселенной далека от максимально неупорядоченного состояния.

Энтропия черной дыры

Черные дыры имеют огромные гравитационные поля, такие, что частицы не могут вырваться из них и перейти в бесконечность.

Допустим, что в поле притяжения черной дыры попало тело с высокой температурой и некоторой энтропией. Полная энтропия системы черная дыра – тело будет равна сумме их энтропий. Эта энтропия уменьшаться не может.

Одним из механизмов появления черных дыр служит гравитационное сжатие вещества, при условиях в которых противодействие внутреннего давления ему за счет сил гравитации не хватает. При таком сжатии энтропия:

$ S\sim k{\bullet 10}{74}\left( \frac{M}{M_{s}} \right){2}\left( 4 \right).$

где $M$ — масса черной дыры; $M_s$ — масса солнца, $k$ — постоянная Больцмана.

Энтропия аналогичной сжимающейся массы равна:

$S\sim k\frac{M}{m}\sim k\bullet {10}{57}\frac{M}{M_{s}}\left( 5 \right).$

где $m=1,6∙10{-24}$ г – масса частицы.

Сравнивая выражения (4) и (5) можно сделать вывод о том, что процесс коллапса с образованием черной дыры является существенно необратимым. Энтропия в данном процессе увеличивается практически на 20 порядков при массе равной массе Солнца.

Источник: https://spravochnick.ru/fizika/termodinamika/entropiya_vselennoy/

Энтропия Вселенной и парадокс черных дыр

Энтропия вселенной

Знаменитый ученый Стивен Хокинг много размышлял о природе черных дыр. И еще он очень хотел найти связь между квантовой механикой и гравитацией. Это привело его к размышлениям об энтропии. Эта концепция настолько фундаментальна, что важна не только для физики повседневной жизни. Но и для понимания природы самого времени.

Энтропия

Что же такое энтропия? Если говорить простыми словами — это уровень беспорядка в какой-нибудь изначально упорядоченной системе. В принципе, ничего сложного. Омлет, например, имеет более высокую степень энтропии, чем яйцо, из которого он был изготовлен. Куча кирпичей и деревянных досок обладает большей энтропией, чем дом. Ведь каждый кирпич или доска находятся в нем на своем месте.

Принцип, согласно которому общая энтропия в системе (или во Вселенной) должна увеличиваться со временем, известен как Второй закон термодинамики.

Этот закон не говорит о том, что Вы не можете превратить кучу кирпичей и досок в дом. Или что разбитое яйцо нельзя собрать обратно, склеить скорлупу и покрасить его известью, что бы стало все как было. Он просто говорит о том, что уменьшение энтропии в одном месте ведет к увеличению энтропии в другом. Что это значит?

Пример. Вы строите дом из кучи кирпичей и досок. Уменьшая тем самым степень энтропии в каком-то локальном месте. В данном случае пусть это будут тещины 6 соток где-то под Чебоксарами. Забивая гвозди и складывая в нужном порядке кирпичи, Вы тратите энергию.

Часть этой энергии будет проявляться в виде тепла, которое будет излучаться в окружающую среду. Что делает воздух вокруг Вас, образно говоря, «грязным». Частицы воздуха нагреются от выделяемого Вами тепла. А более высокие температуры означают более высокую энтропию.

Потому что частицы начинают более энергично и хаотично двигаться случайным образом после нагревании.

Ваша работа неизбежно создаст достаточно энтропии, которое компенсирует упорядоченное расположение кирпичей.

Итак, о чем это мы? Ах, да. Какое отношение имеет вся эта история к черным дырам?

Черные дыры: мы то тут при чем?

И кандидаты в доктора начали задавать друг другу странные вопросы. Например: что будет, если взять объект, который имеет высокую энтропию, и бросить со всего размаху в черную дыру? Куда денется вся его энтропия? Мы что, только что нарушили Второй закон термодинамики, уменьшив количество энтропии во Вселенной? Но это же противоречит всем нашим знаниям и теориям!

Мохнатые бороды и седые головы приуныли. Единственная гипотеза, которую выдвинули физики, чтобы объяснить очевидный парадокс, говорила о том, что вероятнее всего сами черные дыры должны иметь какую-то энтропию.

Правила термодинамики гласят, что для того, чтобы иметь определенную энтропию, черная дыра должна иметь определенную температуру. И она ​​должна производить какое-то тепло, которое может быть воспринято кем-то за ее пределами. Это означает, что должен существовать способ покинуть черную дыру. Что опять же противоречило официальной науке.

Чтобы разобраться во всех этих чудных делах, Хокинг совершил глубокое погружение в постулаты общей теории относительности и квантовой механики.

Когда он вынырнул оттуда, вид у него был усталый, но довольный. Были сделаны необходимые расчеты. И оказалось, что черные дыры должны излучать тепло, которое получило название излучение Хокинга. Это предсказание создало совершенно новые парадоксы. Которые физики не могут разрешить и по сей день.

Время течет непрерывно, уверенно и всегда в одну сторону

Но энтропия оказалась проблемой еще более глубокой. Многие физики утверждают, что неуклонное увеличение энтропии ответственно за направление течения самого времени.

Большая часть физики прекрасно работает в прямом или обратном направлении времени. Однако энтропия увеличивается только в одну сторону. Поэтому мы можем помнить прошлое, но не можем предвидеть будущее.

Лишь стрела времени определяет то, в каком направлении развивается энтропия.

В великих традициях физики каждое новое открытие создает все новые и новые вопросы. Соединение стрелы времени с ростом энтропии поднимает острый вопрос о том, как вообще Вселенной удалось родиться в состоянии, в котором энтропия была настолько низкой, что она смогла продолжать расти все прошедшее время.

У нас пока нет ответа на этот вопрос. Но мы надеемся, что он может помочь нам лучше понять, как возникла Вселенная. И какова будет ее судьба, когда энтропия достигнет своего максимального состояния. Будет ли это означать конец всех времен?

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: https://alivespace.ru/entropiya-vselennoj/

Что такое энтропия

Энтропия вселенной

Энтропия — величина, которая характеризует степень неупорядоченности, а также тепловое состояние Вселенной. Греки определили это понятие как превращение или переворот. Но в астрономии и физике его значение несколько отличное. Говоря простым языком, энтропия — это мера хаоса.

Виды

В науку это понятие вошло ещё в XIX веке. Изначально оно было применимо к теории тепловых машин, но достаточно быстро появилось и в остальных областях физики, особенно, в теории излучения. Очень скоро энтропия стала применяться в космологии, биологии, в теории информации. Различные области знаний выделяют разные виды меры хаоса:

  • информационная
  • термодинамическая
  • дифференциальная
  • культурная

Например, для молекулярных систем существует энтропия Больцмана, определяющая меру их хаотичности и однородности. Больцман сумел установить взаимосвязь между мерой хаоса и вероятностью состояния.

Для термодинамики данное понятие считается мерой необратимого рассеяния энергии. Это функция состояния термодинамической системы.

В обособленной системе энтропия растёт до максимальных значений, и они в итоге становятся состоянием равновесия.

Энтропия информационная подразумевает некоторую меру неопределённости или непредсказуемости.

Энтропия Вселенной

Для Вселенной не может быть применён классический вариант вычисления энтропии, потому что в ней активны гравитационные силы, а вещество само по себе не может образовать замкнутую систему. Фактически, для Вселенной – это мера хаоса.Попытки точно рассчитать значение меры хаоса пока нельзя назвать удачными, хотя они происходят постоянно.

Но все оценки энтропии Вселенной имеют значительный разброс в полученных значениях – от одного до трёх порядков. Это объясняется не только недостатком знаний. Ощущается недостаточность сведений о влиянии на расчёты не только всех известных небесных объектов, но и тёмной энергии. Изучение её свойств и особенностей пока в зачатке, а влияние может быть определяющим.

 Мера хаоса Вселенной всё время изменяется.

Тепловая смерть Вселенной

У любой замкнутой термодинамической системы есть конечное состояние. Вселенная тоже не является исключением. Когда прекратится направленный обмен всех видов энергий, они переродятся в тепловую энергию.

Система перейдёт в состояние тепловой смерти, если термодинамическая энтропия получит наивысшие значение. Вывод о таком конце нашего мира сформулировал Р. Клаузиус в 1865 году. Он взял за основу второй закон термодинамики.

Согласно этому закону, система, которая не обменивается энергиями с другими системами, будет искать равновесное состояние. А оно вполне может иметь параметры, характерные для тепловой смерти Вселенной. Но Клаузиус не учитывал влияния гравитации.

То есть, для Вселенной, в отличие от системы идеального газа, где частицы распределены в каком-то объёме равномерно, однородность частиц не может соответствовать самому большому значению энтропии. И всё-таки, до конца не ясно, энтропия — допустимая мера хаоса или смерть Вселенной?

В нашей жизни

В пику второму началу термодинамики, по положениям которого всё должно развиваться от сложного к простому, развитие земной эволюции продвигается в обратном направлении. Эта нестыковка обусловлена термодинамикой процессов, которые носят необратимый характер.

Потребление живым организмом, если его представить как открытую термодинамическую систему, происходит в меньших объёмах, нежели выбрасывается из неё.

Пищевые вещества обладают меньшей энтропией, нежели произведённые из них продукты выделения.

 

То есть, организм жив, потому что может выбросить эту меру хаоса, которая в нём вырабатывается в силу протекания необратимых процессов. К примеру, путём испарения из организма выводится около 170 г воды, т.е. тело человека компенсирует понижение энтропии некоторыми химическими и физическими процессами.

Энтропия – это некая мера свободного состояния системы. Она тем полнее, чем меньшие ограничения эта система имеет, но при условии, что степеней свободы у неё много. Получается, что нулевое значение меры хаоса – это полная информация, а максимальное – абсолютное незнание.

Вся наша жизнь – сплошная энтропия, потому что мера хаоса иногда превышает меру здравого смысла. Возможно, не так далеко время, когда мы придём ко второму началу термодинамики, ведь иногда кажется, что развитие некоторых людей, да и целых государств, уже пошло вспять, то есть, от сложного к примитивному.

Источник: http://light-science.ru/fizika/entropiya.html

Спросите Итана: какая была энтропия у Вселенной в момент Большого взрыва?

Энтропия вселенной

Заглядывая на разные расстояния в космос, мы видим разное время, прошедшее с Большого взрыва. И энтропия всё это время росла. Второй закон термодинамики — один и тех загадочных законов природы, что возникают из фундаментальных правил. Он утверждает, что энтропия, мера беспорядка во Вселенной, обязана постоянно возрастать в любой закрытой системе.

Но как же возможно, что наша текущая Вселенная, выглядящая организованной и упорядоченной, с солнечными системами, галактиками и сложной космической структурой, каким-то образом находится в состоянии с энтропией большей, чем сразу после Большого взрыва? Именно это хочет узнать наш читатель:Общепринятое понимание энтропии и времени подразумевает, что сразу после Большого взрыва энтропия была очень малой. Однако же этот момент часто описывают как «суп» из фотонов, кварков и электронов, нечто, что по сравнению с примерами из учебника кажется высокой энтропией. Каким же образом это изначальное состояние обладало низкой энтропией? Термодинамическая стрела времени подразумевает постоянный рост энтропии, поэтому сегодня она должна быть больше, чем в прошлом.

Ранняя Вселенная была заполнена материей и излучением, и была такой горячей и плотной, что представленные в ней кварки и глюоны не собирались в отдельные протоны и нейтроны, а оставались в виде кварк-глюонной плазмы

И всё же, если представить себе очень раннюю Вселенную, она действительно выглядит как состояние с очень высокой энтропией! Представьте себе: море частиц, включая материю, антиматерию, глюоны, нейтрино, фотоны, всё это с жужжанием носится туда и сюда на уровне энергий в миллиарды раз выше, чем сегодня можно достичь на Большом адронном коллайдере. Их так много — возможно, 1090 — и все они сжаты в объём размером с футбольный мяч. В момент Большого взрыва это был крохотный регион с чрезвычайно энергичными частицами, и за 13,8 млрд лет он вырос до размеров наблюдаемой нами Вселенной.

Наша Вселенная, от Большого взрыва и до сегодняшнего дня, прошла огромные изменения в ходе роста и эволюции, и продолжает меняться и сегодня

Очевидно, что сегодня Вселенная гораздо холоднее, крупнее, полна структур и неоднородна. Но на самом деле мы можем количественно оценить энтропию Вселенной в оба момента времени, в момент Большого взрыва и сегодня, через постоянную Больцмана, kB.

В момент Большого взрыва почти вся энтропия существовала за счёт излучения, и общая энтропия Вселенной равнялась S = 1088kB. С другой стороны, подсчитав энтропию Вселенной сегодня, мы получим число в квадриллион раз большее: S = 10103kB.

Оба числа кажутся большими, но первое по сравнению со вторым очевидно меньшее — оно составляет всего 0,0000000000001% от второго!

Сегодняшняя Вселенная более комковатая, в ней больше скоплений, и больше света звёзд, чем в ранней Вселенной. Почему же энтропия так сильно отличается? Но с этими числами нужно учитывать один важный момент. Если вы слышите такие слова, как «измерение беспорядка», то это крайне неудачно определение того, что на самом деле представляет собой энтропия. Вместо этого представьте, что у вас есть некая система — материя, излучение, что угодно. В ней будет содержаться какая-либо энергия, в разных формах — кинетической, потенциальной, энергия поля, и что угодно ещё. Энтропия на самом деле измеряет количество возможных состояний вашей системы.
Система, устроенная так, как показано слева, может во время развития спонтанно перейти в состояние справа и увеличить энтропию Допустим, если у вашей системы есть холодная и горячая части, то у вас будет меньше способов организовать её в таком виде, чем если бы температура была бы везде одинаковой. Система на картинке слева имеет меньшую энтропию, чем справа. Фотоны в реликтовом излучении обладают практически такой же энтропией, какая была у них при рождении Вселенной. Поэтому утверждается, что Вселенная расширяется адиабатически — с постоянной энтропией. Мы можем смотреть на галактики, звёзды, планеты, и удивляться тому, насколько всё это кажется упорядоченным или беспорядочным, но их энтропия пренебрежимо мала. Так из-за чего же произошло такое нереальное увеличение энтропии?
Чёрных дыр не было при рождении Вселенной, они выросли в ней позднее, и сегодня доминируют в плане энтропии

Ответ — чёрные дыры. Представьте, какое огромное количество частиц ушло на создание чёрных дыр. Падая в ЧД, вы неизбежно попадаете в сингулярность.

А количество состояний прямо пропорционально массе частиц в чёрных дырах, поэтому чем больше вы сформируете ЧД (или чем более массивными они у вас будут), тем больше энтропии будет во Вселенной.

Одна лишь сверхмассивная чёрная дыра в центре Млечного пути обладает энтропией S = 1091kB, в 1000 раз больше, чем вся Вселенная во время Большого взрыва. А учитывая количество галактик и массы чёрных дыр, общая энтропия достигает значения в S = 10103kB.

Композитное изображение чёрной дыры Стрелец A* в центре нашей галактики из рентгеновского и инфракрасного диапазона. Её масса составляет 4 миллиона солнечных, а энтропия в 1000 раз больше чем у всей Вселенной Большого взрыва

Дальше — хуже! В далёком будущем будет формироваться всё больше и больше чёрных дыр, а существующие сегодня крупные ЧД будут продолжать расти ещё 1020 лет. Если бы мы превратили всю Вселенную в ЧД, мы достигли бы максимальной энтропии примерно в S = 10123kB, или в 100 квинтиллионов раз больше, чем сегодня.

Когда эти ЧД будут испаряться за ещё более крупные отрезки времени — порядка 10100 лет — энтропия будет оставаться почти постоянной, поскольку излучение чёрного тела (излучение Хокинга), выдаваемое испаряющимися ЧД, будет обладать тем же количеством возможных организаций состояния, как и существовавшая до этого ЧД.

На достаточно длинных временных промежутках ЧД уменьшаются и испаряются из-за излучения Хокинга

Так почему в ранней Вселенной была такая малая энтропия? В ней не было чёрных дыр. Энтропия в S=1088kB всё ещё достаточно большая, но это энтропия всей Вселенной, почти полностью заложенная в остаточном излучении (и в чуть меньшей — в нейтрино) Большого взрыва.

Поскольку у видимого нами вещества во Вселенной, типа звёзд, галактик, и т.п.

, энтропия пренебрежимо мала по сравнению с остаточным излучением, довольно легко запутаться и подумать, что с формированием структур энтропия ощутимо меняется — но это всего лишь совпадение, а не причина.

На формирование самой первой звезды и самой первой чёрной дыры у Вселенной ушло не менее десятков миллионов лет. До того энтропия Вселенной на 99% не менялась Если бы чёрных дыр не существовало, энтропия Вселенной оставалась бы практически неизменной за прошедшие 13,8 млрд лет! У изначального состояния было ощутимое количество энтропии, просто у ЧД его настолько больше, и их настолько легко сделать с космической точки зрения.

Итан Сигель – астрофизик, популяризатор науки, автор блога Starts With A Bang! Написал книги «За пределами галактики» [Beyond The Galaxy], и «Трекнология: наука Звёздного пути» [Treknology].

Источник: https://habr.com/post/371057/

Энтропия Вселенной | Новости науки

Энтропия вселенной

Второй закон термодинамики – один из тех загадочных законов природы, который возникает из ее фундаментальных правил. Он говорит о том, что энтропия, мера беспорядка во Вселенной, всегда должна увеличиваться в любой замкнутой системе.

Но как возможно, что наша Вселенная сегодня, которая выглядит организованной и упорядоченной с помощью планетных систем, галактик и сложной космической структуры, каким-то образом находится в состоянии с более высокой энтропией, чем сразу после Большого взрыва, ведь кажется, что все должно быть наоборот.

Термодинамическая стрела времени подразумевает, что энтропия всегда возрастает, поэтому сегодня она больше, чем в прошлом.

И все же, если мы думаем об очень ранней Вселенной, она, безусловно, выглядит как состояние с высокой энтропией! Вообразите это: море частиц, включая вещество, антивещество, глюоны, нейтрино и фотоны, все вокруг несутся с энергиями в миллиарды раз выше, чем даже БАК может получить сегодня. Их было так много – всего около 1099 и все они находились в области размером с футбольный мяч. Прямо в момент Большого взрыва этот крошечный регион с этими чрезвычайно энергичными частицами вырастет во всю нашу наблюдаемую Вселенную в течение следующих 13,8 миллиардов лет.

Совершенно очевидно, что сегодня Вселенная намного холоднее, больше, более структурирована и однородна. Но мы можем фактически количественно оценить энтропию Вселенной в оба момента, в момент Большого взрыва и сегодня, с точки зрения постоянной Больцмана, kb. (kb = 1,380 649 * 10-23  Дж/К)

В момент Большого взрыва почти вся энтропия была обусловлена ​​излучением, а общая энтропия Вселенной составляла S = 1088 kb.

С другой стороны, если сегодня мы вычислим энтропию Вселенной, она будет примерно в четыре миллиарда раз больше: S = 10103 kb.

В то время как оба эти числа кажутся большими, первое число определенно имеет низкую энтропию по сравнению с последним: это всего лишь 0,0000000000001% от него!

Однако что важно иметь в виду, когда мы говорим об этих цифрах. Когда вы слышите такие термины, как «мера беспорядка», это на самом деле очень плохое описание того, что такое энтропия.

Вместо этого представьте, что у вас есть любая система, которая вам нравится: материя, излучение, что угодно. Предположительно, там будет закодирована некоторая энергия, будь то кинетическая, потенциальная, энергия поля или любой другой тип энергии.

Что на самом деле измеряет энтропия, так это количество возможных вариантов состояния вашей системы.

Система, созданная в начальных условиях слева и позволяющая развиваться, станет системой справа спонтанно, приобретая при этом энтропию.

Если ваша система имеет, скажем, холодную часть и горячую часть, вы можете организовать ее меньшим количеством способов, чем если бы она была с одинаковой температурой. Система, слева вверху, является системой с более низкой энтропией, чем система справа.

Фотоны на космическом микроволновом фоне сегодня имеют практически ту же энтропию, что и при рождении Вселенной. Вот почему говорят, что Вселенная расширяется адиабатически, что означает постоянную энтропию.

Хотя мы можем смотреть на галактики, звезды, планеты и т. д.  и удивляться тому, насколько упорядоченными или беспорядочными они кажутся, их энтропия незначительна.

Так что же вызвало это огромное увеличение энтропии?

Ответ – черные дыры. Если вы подумаете обо всех частицах, которые образуют черную дыру, то получите огромное их количество. Попадая в черную дыру, вы неизбежно получаете сингулярность. И число состояний прямо пропорционально массам частиц в черной дыре, поэтому, чем больше черных дыр вы сформируете (или чем массивнее будут черные дыры), тем больше энтропии вы получаете во Вселенной.

Одна только сверхмассивная черная дыра в центре Млечного Пути имеет энтропию S = 1091 kb, что примерно в 1000 раз больше, чем у всей Вселенной при Большом Взрыве. Учитывая количество галактик и массу черных дыр в целом, общая энтропия сегодня достигла значения S = 10103 kb.

И все это будет только ухудшаться! В далеком будущем будет образовываться все больше и больше черных дыр, и большие черные дыры, которые существуют сегодня, будут продолжать расти в течение следующих 1020 лет.

Если бы мы превратили всю вселенную в черную дыру, мы бы достигли максимальной энтропии примерно S = 10123 kb, или в 100 квинтиллионов раз больше, чем энтропия сегодня.

Когда черные дыры распадутся в еще больших временных масштабах – примерно до 10100 лет – эта энтропия останется почти постоянной, поскольку излучение черного тела (излучение Хокинга), создаваемое распадающимися черными дырами, будет иметь такое же количество возможных состояний, что и ранее существовавшая черная дыра.

Так почему же в ранней Вселенной была настолько низкая энтропия? Потому что там не было черных дыр.

Энтропия S = 1088 kb по-прежнему чрезвычайно велика, но это энтропия всей Вселенной, которая почти исключительно закодирована в остатке излучения (и, в несколько меньшей степени, нейтрино) от Большого взрыва. Поскольку объекты, которые мы видим, когда смотрим на Вселенную, такие как звезды, галактики и т. д.

, имеют незначительную энтропию по сравнению с этим оставшимся фоном, легко обмануть себя, полагая, что энтропия существенно изменяется в виде структурных форм, но это всего лишь совпадение, а не причина.

Если бы не было таких объектов, как черные дыры, энтропия Вселенной была бы почти постоянной на протяжении последних 13,8 миллиардов лет! То первичное состояние действительно имело значительную энтропию; просто у черных дыр ее намного больше.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: https://ab-news.ru/2019/09/01/entropiya-vselennoy/

Booksm
Добавить комментарий