Энергия механического тела

Закон сохранения механической энергии

Энергия механического тела

Статьи

Линия УМК А. В. Перышкина. Физика (7-9)

Физика

Удивительно, но закон сохранения механической энергии — базовый закон механики — открыл немецкий корабельный доктор Роберт Юлий Майер, а не ученый-физик.

Майеру на момент путешествия было всего 28 лет, во время стоянки корабля в тропическом регионе при кровопускании он наблюдал, что багрово-красная кровь, вытекающая во время процедуры у жителей холодной Европы, в тропиках напоминала алую артериальную…

07 августа 2019

Майер предположил, что кровь не меняет цвет, поскольку организму в тропическом климате нет необходимости тратить кислород на поддержание

температуры тела. Вернувшись на родину, перед тем как сформулировать закон сохранения механической энергии, Майер продолжил опыты с открытыми на то время разновидностями энергии:

  • кинетической,
  • потенциальной,
  • внутренней,
  • механической;

…и смог определить, в чем заключается закон сохранения механической энергии.

«Тепло, электричество и перемещение представляют собою феномены, которые могут быть сведены к одной силе, измеряются друг другом и переходят друг в друга по определенным законам» — излагал в своей научной работе Майер.

Английский физик Джеймс Джоуль, чье имя носит единица измерения энергии, и германский естествоиспытатель Герман Гельмгольц несколькими годами позже также
описали закон сохранения энергии.

Кинетическая и потенциальная энергия

Энергия тела — физическая величина, определяющая работу наблюдаемого тела или системы тел за бесконечно долгое время.

В изучении механических явлений рассматривают потенциальную и кинетическую энергии.

  • Единица энергии в СИ 1 Джоуль (Дж).

Кинетическая энергия — энергия, которой обладает тело в движении (вращении, перемещении в пространстве).

Футбольный мяч, летящий в ворота, летящая в цель стрела, выпущенная метким лучником, едущие с горы сани с сидящим в них хохочущим ребенком — все они во время движения характеризуются кинетической энергией.

Кинетическая энергия напрямую зависит от массы тела и скорости перемещения.

Формула кинетической энергии Ек = mv2/2

Где где m — масса объекта;

v  — скорость перемещения объекта в конкретной точке.

Потенциальная энергия. Само по себе тело потенциальной энергией не обладает.  Этот вид энергии характеризует взаимосвязь элементов объекта или двух отдельных тел в пространстве.

Стоящие на вершине холма санки, стрела, вложенная лучником в натянутую тетиву, ядро в стволе средневековой пушки — пример объекта, обладающего потенциальной энергией.

Потенциальная энергия бывает положительной или отрицательной относительно определенного условного нулевого уровня, принятого для системы координат:

  • сила тяжести,
  • сила упругости,
  • архимедова сила

Потенциальная энергия объекта зависит от приложенных к нему сил.

Если оценивать расположение объекта в отношении уровня Земли, то потенциальная энергия объекта на поверхности планеты принимается за ноль.

Уравнение Еп = mɡh поможет рассчитать потенциальную энергию на высоте h:
где m — масса тела;
ɡ — ускорение свободного падения;
h — высота центров масс объектов относительно поверхности планеты;
ɡ = 9,8 м/с2

Потенциальная энергия упруго деформированного объекта (пружины) рассчитывается согласно уравнению:
Еп = k·(∆x)2/2,
где k — коэффициент жёсткости,
∆x — изменение длины объекта вследствие его сжатия или растяжения.

Подробно различные виды потенциальной энергии разбираются на странице 131 учебника «Физика 10 кл. под редакцией Касьянова В. А.»

Физика. 9 класс. Учебник.

Учебник отличаются качественным современным оформлением, в нём приводятся многочисленные слайды и микрофотографии.

Выполняя проблемные, поисковые и исследовательские задания, школьники не только активно усваивают материал, но и учатся мыслить, искать и анализировать информацию из разных источников, в том числе из интернета.

Особое внимание уделяется практическим заданиям: ученикам предлагается проводить опыты, конструировать модели, разрабатывать проекты.

Купить Закон превращения и сохранения энергии

Суммарное число значений потенциальной и кинетической энергий объекта обозначают как механическая энергия. Для каждого конкретного объекта механическая энергия определяется не выбором системы отсчета, в которой рассчитывают скорость движения исследуемого объекта, а установлением уровня условного нуля для всех видов потенциальных энергий, определенных у данного объекта.

Механическая энергия определяет свойство объекта (системы объектов) совершать работу за счет изменения скорости перемещения объекта или изменения расположения взаимодействующих объектов относительно друг друга.

Сформулируем закон сохранения механической энергии с помощью математического уравнения:

Еk1 + Еп1 = Еk2 + Еп2

Глядя на представленную формулу видно, что энергия не появляется из ниоткуда и не исчезает в неизвестном направлении; лишь происходит преобразование одной разновидности в другую или переход между взаимодействующими объектами.

В изолированной или закрытой системе, т.е. системе, на которую не оказывают влияния силы извне или их возможно игнорировать, энергетический обмен с внешней средой не происходит, и внутренняя энергия объекта не изменяется.

В ней могут происходить лишь превращения потенциальной энергии в кинетическую и наоборот. В учебнике «Физика. 10 класс» под редакцией В. А. Касьянова на портале LECTA разобраны примеры задач на закон сохранения энергии.

#ADVERTISING_INSERT#

Источник: https://rosuchebnik.ru/material/zakon-sokhraneniya-mekhanicheskoy-energii/

Энергия механического тела

Энергия механического тела

Состояние механического движения системы тел характеризуется в тот момент, когда для определенного момента времени заданы дополнительные параметры в виде:

  • относительности расположения тела в пространстве;
  • скорости.

В настоящее время различают два основных вида энергии, которые применяют для решения задач в области механического движения тел:

  • кинетическая энергия – зависит от скоростей тел;
  • потенциальная энергия – зависит от взаимного расположения тел.

При получении выражения энергии в виде определенной функции параметров состояния механического движения находят параметр изменения величины энергии. Он должен меняться в зависимости от величины параметров.

Подобное изменение состояния напрямую связано с воздействиями внешних сил, которые прилагаются к системе, а также с процессами. Они должны совершать работу и передавать энергию всей системе от внешних сил.

В случаях, если работа внешних сил складывается положительным образом, то и энергия системы начинает увеличиваться. Отрицательная работа внешних сил заставляет энергию системы растрачиваться. Если энергия убывает, то система совершает работу над внешними силами. За счет энергии системы совершается работа сил, которые прикладываются со стороны внешних сил.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Кинетическая энергия

Для универсального просчета изменения кинетической энергии системы выделяют любое тело, находящееся в ней. Действие сил, которые принадлежат системе и внешних сил по отношению к ней, можно заменить на конечный результат определенных сил.

Определение 1

Кинетической энергией называется энергия движущегося тела.

Для вычисления кинетической энергии необходимо подсчитать работу, которую должна произвести результирующая сила.

Сила $F$ действует на тело, которое находится в состоянии покоя, тем самым вызывает его движение. Эти действия называются совершением работы, при этом энергия движущегося тела возрастает на величину затраченной работы. Работа $dA$ силы $F$ на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии $dt$ тела.

В этом случае применяется Второй закон Ньютона $F=m$, где умножая на перемещение $dr$, можно получить формулу:

$dA = mv \ dv = mvdv = dT$

Тело с определенной массой двигается со скоростью $v$ и обладает кинетической энергией.

Формула показывает, что кинетическая энергия зависит от функции состояния ее движения, а не только от скорости и массы тела. В процессе вывода формулы использовался принцип рассмотрения движения материального тела в инерциальной системе отсчета. Без внедрения такой системы отсчета нельзя было бы использовать законы Ньютона.

Замечание 1

Кинетическая энергия полностью зависит от выбора системы отсчета.

В различных инерциальных СО, которые двигаются относительно друг друга, кинетическая энергия и скорость тела будут иметь неодинаковые значения.

Потенциальная энергия

Определение 2

Потенциальной энергией называют вид механической энергии системы тел, которая определяется взаимным расположением объектов, а также характером сил взаимодействия между ними.

Взаимодействие тел может осуществляться при помощи силовых полей. В их число входят:

  • упругие силы;
  • поля гравитационных сил.

Такие силовые поля характеризуются работой, которая осуществляется действующими силами в процессе перемещение тела из одного положения в другое. Взаимодействие не зависит от траектории перемещения этих тел. Главной особенностью такого процесса является зависимость от начального и конечного положения тела.

Замечание 2

Подобные силы называют консервативными, а поля – потенциальными.

В случаях, когда работа совершается силой и зависит от траектории перемещения определенного тела, сила носит название диссипативной. Ярким примером такой силы может являться сила трения.

В этом случае, работа $dA$ выражается в виде скалярного произведения силы $F$ на перемещение $dr$.

Потенциальную энергию с массой тела $m$ и поднятого на высоту h над земной поверхностью, можно представить в конкретном виде функции $П$, которая зависит от характера силового поля: $\Pi=—mgh'$.

Исходя из того, что начало отсчета выбирается произвольным способом, то потенциальная энергия имеет отрицательное значения. Важно помнить, что кинетическая энергия имеет постоянное положительное значение.

Потенциальную энергию тела, которое лежит на поверхности Земли, можно принять за ноль. Тогда потенциальная энергия тела будет вычисляться по формуле: $\Pi=—mgh'$.

При нахождении потенциальной энергии упругодеформированного тела сила упругости будет пропорциональна деформации.

Для этого необходимо ввести коэффициент упругости, определить величину проекции силы упругости на ось.

Потенциальная энергия системы является функцией состояния системы. Она зависит от конфигурации системы, а также ее положения к внешним телам.

Полная механическая энергия системы

Энергию механического движения и взаимодействия называют полной механической энергией системы. Она равна сумме потенциальной и кинетической энергий.

Работа, которую производит тело в движении при торможении до остановки, не зависит от траектории движения. Она равна кинетической энергии тела. Кинетическая энергия системы тел равняется сумме кинетических энергий тел, которые составляют систему.

Потенциальная энергия системы тел определяется при указании взаимного расположения тел в системе, в том числе силы, которая действует между ними.

Изменение потенциальной энергии равно работе, которую производят внешние силы. Эти силы переводят систему без изменения скорости из первоначального положения в иное.

В случаях, когда внешние силы производят работу против внутренних сил системы, то необходимо говорить об отрицательной работе.

Потенциальная энергия тяготения высчитывается по формулам:

$dEп = -Fdr$

$E=mgH$

Потенциальная энергия упругодеформированного тела по формуле:

$dA = Fdx = kxdx$

Источник: https://spravochnick.ru/fizika/energiya_mehanicheskogo_tela/

Потенциальная и кинетическая энергия. Закон сохранения механической энергии – FIZI4KA

Энергия механического тела

ОГЭ 2018 по физике ›

1. Камень, упав с некоторой высоты на Землю, оставляет на поверхности Земли вмятину. Во время падения он совершает работу по преодолению сопротивления воздуха, а после касания земли — работу по преодолению силы сопротивления почвы, поскольку обладает энергией.

Если накачивать в закрытую пробкой банку воздух, то при некотором давлении воздуха пробка вылетит из банки, при этом воздух совершит работу по преодолению трения пробки о горло банки, благодаря тому, что воздух обладает энергией. Таким образом, тело может совершить работу, если оно обладает энергией.

Энергию обозначают буквой ​\( E \)​. Единица работы — ​\( [E\,] \)​ = 1 Дж.

При совершении работы изменяется состояние тела и изменяется его энергия. Изменение энергии равно совершенной работе: ​\( E=A \)​.

2.Потенциальной энергией называют энергию взаимодействия тел или частей тела, зависящую от их взаимного положения.

Поскольку тела взаимодействуют с Землёй, то они обладают потенциальной энергия взаимодействия с Землёй.

Если тело массой ​\( m \)​ падает с высоты ​\( h_1 \)​ до высоты ​\( h_2 \)​, то работа силы тяжести ​\( F_т \)​ на участке ​\( h=h_1-h_2 \)​ равна: ​\( A = F_тh = mgh = mg(h_1 — h_2) \)​ или \( A = mgh_1 — mgh_2 \) (рис. 48).

В полученной формуле ​\( mgh_1 \)​ характеризует начальное положение (состояние) тела, \( mgh_2 \) характеризует конечное положение (состояние) тела. Величина \( mgh_1=E_{п1} \) — потенциальная энергия тела в начальном состоянии; величина \( mgh_2=E_{п2} \) — потенциальная энергия тела в конечном состоянии.

Можно записать ​\( A=E_{п1}-E_{п2} \)​, или \( A=-(E_{п2}-E_{п1}) \), или \( A=-E_{п} \).

Таким образом, работа силы тяжести равна изменению потенциальной энергии тела. Знак «–» означает, что при движении тела вниз и соответственно при совершении силой тяжести положительной работы потенциальная энергия тела уменьшается. Если тело поднимается вверх, то работа силы тяжести отрицательна, а потенциальная энергия тела увеличивается.

Если тело находится на некоторой высоте ​\( h \)​ относительно поверхности Земли, то его потенциальная энергия в данном состоянии равна ​\( E_п=mgh \)​. Значение потенциальной энергии зависит от того, относительно какого уровня она отсчитывается. Уровень, на котором потенциальная энергия равна нулю, называют нулевым уровнем.

В отличие от кинетической энергии потенциальной энергией обладают покоящиеся тела. Поскольку потенциальная энергия — это энергия взаимодействия, то она относится не к одному телу, а к системе взаимодействующих тел. В данном случае эту систему составляют Земля и поднятое над ней тело.

3. Потенциальной энергией обладают упруго деформированные тела. Предположим, что левый конец пружины закреплён, а к правому её концу прикреплён груз. Если пружину сжать, сместив правый её конец на ​\( x_1 \)​, то в пружине возникнет сила упругости ​\( F_{упр1} \)​, направленная вправо (рис. 49).

Если теперь предоставить пружину самой себе, то её правый конец переместится, удлинение пружины будет равно \( x_2 \)​, а сила упругости \( F_{упр2} \).

Работа силы упругости равна

\[ A=F_{ср}(x_1-x_2)=k/2(x_1+x_2)(x_1-x_2)=kx_12/2-kx_22/2 \]

​\( kx_12/2=E_{п1} \)​ — потенциальная энергия пружины в начальном состоянии, \( kx_22/2=E_{п2} \) — потенциальная энергия пружины во конечном состоянии. Работа силы упругости равна изменению потенциальной энергии пружины.

Можно записать ​\( A=E_{п1}-E_{п2} \)​, или \( A=-(E_{п2}-E_{п1}) \), или \( A=-E_{п} \).

Знак «–» показывает, что при растяжении и сжатии пружины сила упругости совершает отрицательную работу, потенциальная энергия пружины увеличивается, а при движении пружины к положению равновесия сила упругости совершает положительную работа, а потенциальная энергия уменьшается.

Если пружина деформирована и её витки смещены относительно положения равновесия на расстояние ​\( x \)​, то потенциальная энергия пружины в данном состоянии равна ​\( E_п=kx2/2 \)​.

4. Движущиеся тела так же могут совершить работу. Например, движущийся поршень сжимает находящийся в цилиндре газ, движущийся снаряд пробивает мишень и т.п. Следовательно, движущиеся тела обладают энергией.

Энергия, которой обладает движущееся тело, называется кинетической энергией. Кинетическая энергия ​\( E_к \)​ зависит от массы тела и его скорости \( E_к=mv2/2 \). Это следует из преобразования формулы работы.

Работа ​\( A=FS \)​. Сила ​\( F=ma \)​. Подставив это выражение в формулу работы, получим ​\( A=maS \)​.

Так как ​\( 2aS=v2_2-v2_1 \)​, то ​\( A=m(v2_2-v2_1)/2 \)​ или \( A=mv2_2/2-mv2_1/2 \), где ​\( mv2_1/2=E_{к1} \)​ — кинетическая энергия тела в первом состоянии, \( mv2_2/2=E_{к2} \) — кинетическая энергия тела во втором состоянии.

Таким образом, работа силы равна изменению кинетической энергии тела: ​\( A=E_{к2}-E_{к1} \)​, или ​\( A=E_к \)​. Это утверждение — теорема о кинетической энергии.

Если сила совершает положительную работу, то кинетическая энергия тела увеличивается, если работа силы отрицательная, то кинетическая энергия тела уменьшается.

5. Полная механическая энергия ​\( E \)​ тела — физическая величина, равная сумме его потенциальной ​\( E_п \)​ и кинетической \( E_п \) энергии: \( E=E_п+E_к \).

Пусть тело падает вертикально вниз и в точке А находится на высоте ​\( h_1 \)​ относительно поверхности Земли и имеет скорость ​\( v_1 \)​ (рис. 50).

В точке В высота тела \( h_2 \) и скорость \( v_2 \) Соответственно в точке А тело обладает потенциальной энергией ​\( E_{п1} \)​ и кинетической энергией \( E_{к1} \), а в точке В — потенциальной энергией \( E_{п2} \) и кинетической энергией \( E_{к2} \).

При перемещении тела из точки А в точку В сила тяжести совершает работу, равную А. Как было показано, ​\( A=-(E_{п2}-E_{п1}) \)​, а также \( A=E_{к2}-E_{к1} \). Приравняв правые части этих равенств, получаем: ​\( -(E_{п2}-E_{п1})=E_{к2}-E_{к1} \)​, откуда \( E_{к1}+E_{п1}=E_{п2}+E_{к2} \) или ​\( E_1=E_2 \)​.

Это равенство выражает закон сохранения механической энергии: полная механическая энергия замкнутой системы тел, между которыми действуют консервативные силы (силы тяготения или упругости) сохраняется.

В реальных системах действуют силы трения, которые не являются консервативными, поэтому в таких системах полная механическая энергия не сохраняется, она превращается во внутреннюю энергию.

  • Примеры заданий
  • Ответы

Часть 1

1. Два тела находятся на одной и той же высоте над поверхностью Земли. Масса одного тела ​\( m_1 \)​ в три раза больше массы другого тела ​\( m_2 \)​. Относительно поверхности Земли потенциальная энергия

1) первого тела в 3 раза больше потенциальной энергии второго тела 2) второго тела в 3 раза больше потенциальной энергии первого тела 3) первого тела в 9 раз больше потенциальной энергии второго тела

4) второго тела в 9 раз больше потенциальной энергии первого тела

2. Сравните потенциальную энергию мяча на полюсе ​\( E_п \)​ Земли и на широте Москвы ​\( E_м \)​, если он находится на одинаковой высоте относительно поверхности Земли.

1) ​\( E_п=E_м \)​
2) \( E_п>E_м \)
3) \( E_п

Источник: https://fizi4ka.ru/ogje-2018-po-fizike/potencialnaja-i-kineticheskaja-jenergija-zakon-sohranenija-mehanicheskoj-jenergii.html

Энергия

Энергия механического тела

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: работа силы, мощность, кинетическая энергия, потенциальная энергия, закон сохранения механической энергии.

Мы приступаем к изучению энергии — фундаментального физического понятия. Но предварительно нужно разобраться с другой физической величиной — работой силы.

Работа

Пусть на тело действует постоянная сила и тело, двигаясь прямолинейно по горизонтальной поерхности, совершило перемещение . Сила не обязательно является непосредственной причиной перемещения (так, сила тяжести не является непосредственной причиной перемещения шкафа, который передвигают по комнате).

Предположим сначала, что векторы силы и перемещения сонаправлены (рис. 1; остальные силы, действующие на тело, не указаны)

Рис. 1.A=Fs

В этом простейшем случае работа определяется как произведение модуля силы на модуль перемещения:

. (1)

Единицей измерения работы служит джоуль (Дж): Дж=Н м. Таким образом, если под действием силы 1 Н тело перемещается на 1 м, то сила совершает работу 1 Дж.

Работа силы, перпендикулярной перемещению, по определению считается равной нулю. Так, в данном случае сила тяжести и сила реакции опоры не совершают работы.

Пусть теперь вектор силы образует с вектором перемещения острый угол (рис. 2).

Рис. 2. A=Fs cos

Разложим силу на две составляющие: (параллельную перемещению) и (перпендикулярную перемещению). Работу совершает только . Поэтому для работы силы получаем:

. Итак,

. (2)

Если вектор силы образует с вектором перемещения тупой угол , то работа по-прежнему определяется формулой (2). В этом случае работа оказывается отрицательной.

Например, работа силы трения скольжения, действующей на тело в рассмотренных ситуациях, будет отрицательной, так как сила трения направлена противоположно перемещению. В этом случае имеем:

, и для работы силы трения получаем:

,

где — масса тела, — коэффициент трения между телом и опорой.

Соотношение (2) означает, что работа является скалярным произведением векторов силы и перемещения:

.

Это позволяет вычислять работу через координаты данных векторов:

.

Пусть на тело действуют несколько сил и — равнодействующая этих сил. Для работы силы имеем:

,

или

,

где — работы сил . Итак, работа равнодействующей приложенных к телу сил равна сумме работ каждой силы в отдельности.

Мощность

Часто имеет значение быстрота, с которой совершается работа. Скажем, на практике важно знать, какую работу сможет выполнить данное устройство за фиксированное время.

Мощность — это величина, характеризующая скорость совершения работы. Мощность есть отношение работы ко времени , за которое эта работа совершена:

.

Мощность измеряется в ваттах (Вт). 1 Вт = 1 Дж/с, то есть 1 Вт — это такая мощность, при которой работа в 1 Дж совершается за 1 с.

Предположим, что силы, действующие на тело, уравновешены, и тело движется равномерно и прямолинейно со скоростью . В этом случае существует полезная формула для мощности, развиваемой одной из действующих сил .

За время тело совершит перемещение . Работа силы будет равна:

.

Отсюда получаем мощность:

,

или

,

где -угол между векторами силы и скорости.

Наиболее часто эта формула используется в ситуации, когда — сила «тяги» двигателя автомобиля (которая на самом деле есть сила трения ведущих колёс о дорогу). В этом случае , и мы получаем просто:

.

Механическая энергия

Энергия является мерой движения и взаимодействия любых объектов в природе. Имеются различные формы энергии: механическая, тепловая, электромагнитная, ядерная. . .

Опыт показывает, что энергия не появляется ниоткуда и не исчезает бесследно, она лишь переходит из одной формы в другую. Это самая общая формулировка закона сохранения энергии.

Каждый вид энергии представляет собой некоторое математическое выражение. Закон сохранения энергии означает, что в каждом явлении природы определённая сумма таких выражений остаётся постоянной с течением времени.

Измеряется энергия в джоулях, как и работа.

Механическая энергия является мерой движения и взаимодействия механических объектов (материальных точек, твёрдых тел).

Мерой движения тела является кинетическая энергия. Она зависит от скорости тела. Мерой взаимодействия тел является потенциальная энергия. Она зависит от взаимного расположения тел.

Механическая энергия системы тел равна сумме кинетической энергии тел и потенциальной энергии их взаимодействия друг с другом.

Кинетическая энергия

Кинетической энергией тела (принимаемого за материальную точку) называется величина

,

где — масса тела, — его скорость.

Кинетической энергией системы из тел называется сумма кинетических энергий каждого тела:

.

Если тело движется под действием силы , то кинетическая энергия тела, вообще говоря, меняется со временем. Оказывается, именение кинетической энергии тела за некоторый промежуток времени равно работе силы . Покажем это для случая прямолинейного равноускоренного движения.

Пусть — начальная скорость, — конечная скорость тела. Выберем ось вдоль траектории тела (и, соответственно, вдоль вектора силы ). Для работы силы получаем:

.

(мы воспользовались формулой для , выведенной в статье «Равноускоренное движение»). Заметим теперь, что в данном случае проекция скорости отличается от модуля скорости разве что знаком; поэтому и . В результате имеем:

,

что и требовалось.

На самом деле соотношение справедливо и в самом общем случае криволинейного движения под действием переменной силы.

Теорема о кинетической энергии. Изменение кинетической энергии тела равно работе, совершённой приложенными к телу внешними силами за рассматриваемый промежуток времени.

Если работа внешних сил положительна, то кинетическая энергия увеличивается (, тело разгоняется).

Если работа внешних сил отрицательна, то кинетическая энергия уменьшается (, тело замедляет движение). Пример — торможение под действием силы трения, работа которой отрицательна.

Если же работа внешних сил равна нулю, то кинетическая энергия тела за это время не меняется. Нетривиальный пример — равномерное движение по окружности, совершаемое грузом на нити в горизонтальной плоскости.

Сила тяжести, сила реакции опоры и сила натяжения нити всегда перпендикулярны скорости, и работа каждой из этих сил равна нулю в течение любого промежутка времени.

Соответственно, кинетическая энергия груза (а значит, и его скорость) остаётся постоянной в процессе движения.

Задача. Автомобиль едет по горизонтальной дороге со скоростью и начинает резко тормозить. Найти путь , пройденный автомобилем до полной остановки, если коэффициент трения шин о дорогу равен .

Решение. Начальная кинетическая энергия автомобиля , конечная кинетическая энергия . Изменение кинетической энергии .

На автомобиль действуют сила тяжести , реакция опоры и сила трения . Сила тяжести и реакция опоры, будучи перпендикулярны перемещению автомобиля, работы не совершают. Работа силы трения:

.

Из теоремы о кинетической энергии теперь получаем:

.

Потенциальная энергия тела вблизи поверхности Земли

Рассмотрим тело массы , находящееся на некоторой высоте над поверхностью Земли. Высоту считаем много меньше земного радиуса. Изменением силы тяжести в процессе перемещения тела пренебрегаем.

Если тело находится на высоте , то потенциальная энергия тела по определению равна:

где — ускорение свободного падения вблизи поверхности Земли.

Высоту не обязательно отсчитывать от поверхности Земли. Как мы увидим ниже (формулы (3), (4)), физическим смыслом обладает не сама по себе потенциальная энергия, но её изменение. А изменение потенциальной энергии не зависит от уровня отсчёта. Выбор нулевого уровня потенциальной энергии в конкретной задаче диктуется исключительно соображениями удобства.

Найдём работу, совершаемую силой тяжести при перемещении тела. Предположим, что тело перемещается по прямой из точки , находящейся на высоте , в точку , находящуюся на высоте (рис. 3).

Рис. 3.A=mg(h1-h2)[/math]

Угол между силой тяжести и перемещением тела обозначим . Для работы силы тяжести получим:

.

Но, как видно из рис. 3, . Поэтому

,

или

. (3)

Учитывая, что , имеем также:

. (4)

Можно доказать, что формулы (3) и (4) справедливы для любой траектории, по которой тело перемещается из точки в точку , а не только для прямолинейного отрезка.

Работа силы тяжести не зависит от формы траектории, по которой перемещается тело, и равна разности значений потенциальной энергии в начальной и конечной точках траектории. Иными словами, работа силы тяжести всегда равна изменению потенциальной энергии с противоположным знаком. В частности, работа силы тяжести по любому замкнутому пути равна нулю.

Сила называется консервативной, если при перемещении тела работа этой силы не зависит от формы траектории, а определяется только начальным и конечным положением тела.

Сила тяжести, таким образом, является консервативной. Работа консервативной силы по любому замкнутому пути равна нулю.

Только в случае консервативной силы возможно ввести такую величину, как потенциальная энергия.

Потенциальна яэнергия деформированной пружины

Рассмотрим пружину жёсткости . Начальная деформация пружины равна . Предположим,
что пружина деформируется до некоторой конечной величины деформации . Чему равна при этом работа силы упругости пружины?

В данном случае силу на перемещение не умножишь, так как сила упругости меняется в процессе деформации пружины. Для нахождения работы переменной силы требуется интегрирование. Мы не будем приводить здесь вывод, а сразу выпишем конечный результат.

Оказывается, сила упругости пружины также является консервативной. Её работа зависит лишь от величин и и определяется формулой:

.

Величина

называется потенциальной энергией деформированной пружины (x — величина деформации).

Следовательно,

,

что полностью аналогично формулам (3) и (4).

Закон сохранения механической энергии

Консервативные силы называются так потому, что сохраняют механическую энергию замкнутой системы тел.

Механическая энергия тела равна сумме его кинетической и потенциальной энергий:

.

Механическая энергия системы тел равна сумме их кинетических энергий и потенциальной энергии их взаимодействия друг с другом.

Предположим, что тело совершает движение под действием силы тяжести и/или силы упругости пружины. Будем считать, что трения нет. Пусть в начальном положении кинетическая и потенциальная энергии тела равны и , в конечном положении — и . Работу внешних сил при перемещении тела из начального положения в конечное обозначим .

По теореме о кинетической энергии

.

Но работа консервативных сил равна разности потенциальных энергий:

.

Отсюда получаем:

,

или

.

Левая и правая части данного равенства представляют собой механическую энергию тела в начальном и конечном положении:

.

Следовательно, при движении тела в поле силы тяжести и/или на пружине механическая энергия тела остаётся неизменной при отсутствии трения. Справедливо и более общее утверждение.

Закон сохранения механической энергии. Если в замкнутой системе действуют только консервативные силы, то механическая энергия системы сохраняется.

При этих условиях могут происходить лишь превращения энергии: из кинетической в потенциальную и наоборот. Общий запас механической энергии системы остаётся постоянным.

Закон изменения механической энергии

Если между телами замкнутой системы имеются силы сопротивления (сухое или вязкое трение), то механическая энергия системы будет уменьшаться.

Так, автомобиль останавливается в результате торможения, колебания маятника постепенно затухают и т. д.

Силы трения неконсервативны: работа силы трения очевидным образом зависит от пути, по которому перемещается тело между данными точками. В частности, работа силы трения по замкнутому пути не равна нулю.

Снова рассмотрим движение тела в поле силы тяжести и/или на пружине. Вдобавок на тело действует сила трения, которая за рассматриваемый промежуток времени совершает отрицательную работу . Работу консервативных сил (тяжести и упругости) по-прежнему обозначаем .

Изменение кинетической энергии тела равно работе всех внешних сил:

.

Но , следовательно

.

Отсюда

,

или

.

В левой части стоит величина — изменение механической энергии тела:

.

Итак,при движении тела в поле силы тяжести и/или на пружине изменение механической энергии тела равно работе силы трения.

Так как работа силы трения отрицательна,изменение механической энергии также отрицательно: механическая энергия убывает.Справедливо и более общее утверждение.


Закон изменения механической энергии.

Изменение механической энергии замкнутой системы равно работе сил трения, действующих внутри системы.

Ясно, что закон сохранения механической энергии является частным случаем данного утверждения.

Конечно, убыль механической энергии не противоречит общефизическому закону сохранения энергии. В данном случае механическая энергия превращается в энергию теплового движения частиц вещества и их потенциальную энергию взаимодействия друг с другом, т. е. переходит во внутреннюю энергию тел системы.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/energiya/

Booksm
Добавить комментарий