Электронная конфигурация

Электронные формулы атомов химических элементов (Таблица)

Электронная конфигурация

Таблица содержит электронные формулы атомов химических элементов (слои расположены в порядке заполнения подуровней)

Электронная формула показывает распределение электронов на орбиталях в атоме:

Формирование электронной оболочки атома происходит в соответствии с 3-мя принципами:

1. Принцип минимума энергии, который определяет заполнение атомных орбиталей с наименьшей энергией

(1s < 2s < 2p < 3s < 3p < 4s ≈ 3d < 4p < 5s ≈ 4d < 5p < 6s ≈ 4f ≈ 5d < 6p < 7s)

2. Принцип Паули, который диктует присутствие на атомной орбитали не более 2 электронов с противоположно направленными спинами

3. Правило Хунда, по которому происходит заполнение атомных орбиталей электронами так, чтобы их суммарный спин был максимальным.

Ниже показаны примеры графического изображения электронных формул атомов некоторых химических элементов:

Таблица электронных формул атомов химических элементов

№ элементаХимический знакНазвание элементаЭлектронная формула
1Hводород1s1
2Heгелий1s2
II период
3Liлитий1s22s1
4Beбериллий1s22s2
5Bбор1s22s22p1
6Cуглерод1s22s22p2
7Nазот1s22s22p3
8Oкислород1s22s22p4
9Fфтор1s22s22p5
10Neнеон1s22s22p6
III период
11Naнатрий1s22s22p63s1
12Mgмагний1s22s22p63s2
13Alалюминий1s22s22p63s23p1
14Siкремний1s22s22p63s23p2
15Pфосфор1s22s22p63s23p3
16Sсера1s22s22p63s23p4
17Clхлор1s22s22p63s23p5
18Arаргон1s22s22p63s23p6
 IV период
19Kкалий1s22s22p63s23p64s1
20Caкальций1s22s22p63s23p64s2
21Scскандий1s22s22p63s23p64s23d1
22Tiтитан1s22s22p63s23p64s23d2
23Vванадий1s22s22p63s23p64s23d3
24Crхром1s22s22p63s23p64s13d5
25Mnмарганец1s22s22p63s23p64s23d5
26Feжелезо1s22s22p63s23p64s23d6
27Coкобальт1s22s22p63s23p64s23d7
28Niникель1s22s22p63s23p64s23d8
29Cuмедь1s22s22p63s23p64s13d10
30Znцинк1s22s22p63s23p64s23d10
31Gaгаллий1s22s22p63s23p64s23d104p1
32Geгерманий1s22s22p63s23p64s23d104p2
33Asмышьяк1s22s22p63s23p64s23d104p3
34Seселен1s22s22p63s23p64s23d104p4
35Brбром1s22s22p63s23p64s23d104p5
36Krкриптон1s22s22p63s23p64s23d104p6
V период
37Rbрубидий1s 22s 22p 63s 23p64s 23d104p65s1
38Srстронций1s 22s 22p 63s 23p64s 23d104p65s2
39Yиттрий1s 22s 22p 63s 23p64s 23d104p65s24d1
40Zrцирконий1s 22s 22p 63s 23p64s 23d104p65s24d2
41Nbниобий1s 22s 22p 63s 23p64s 23d104p65s14d4
42Moмолибден1s 22s 22p 63s 23p64s 23d104p65s14d5
43Tcтехнеций1s 22s 22p 63s 23p64s 23d104p65s24d5
44Ruрутений1s 22s 22p 63s 23p64s 23d104p65s14d7
45Rhродий1s 22s 22p 63s 23p64s 23d104p65s14d8
46Pdпалладий1s 22s 22p 63s 23p64s 23d104p65s04d10
47Agсеребро1s 22s 22p 63s 23p64s 23d104p65s14d10
48Cdкадмий1s 22s 22p 63s 23p64s 23d104p65s24d10
49Inиндий1s 22s 22p 63s 23p64s 23d104p65s24d105p1
50Snолово1s 22s 22p 63s 23p64s 23d104p65s24d105p2
51Sbсурьма1s 22s 22p 63s 23p64s 23d104p65s224d105p3
52Teтеллур1s 22s 22p 63s 23p64s 23d104p65s24d105p4
53Iйод1s 22s 22p 63s 23p64s 23d104p65s24d105p5
54Xeксенон1s 22s 22p 63s 23p64s 23d104p65s24d105p6
VI период
55Csцезий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s1
56Baбарий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s2
57Laлантан1s 22s 22p 63s 23p64s 23d104p65s24d105p66s25d1
58Ceцерий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f2
59Prпразеодим1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f3
60Ndнеодим1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f4
61Pmпрометий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f5
62Smсамарий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f6
63Euевропий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f7
64Gdгадолиний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f75d1
65Tbтербий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f9
66Dyдиспрозий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f10
67Hoгольмий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f11
68Erэрбий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f12
68Tmтулий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f13
70Ybиттербий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f14
71Luлютеций1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d1
72Hfгафний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d2
73Taтантал1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d3
74Wвольфрам1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d4
75Reрений1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d5
76Osосмий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d6
77Irиридий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d7
78Ptплатина1s 22s 22p 63s 23p64s 23d104p65s24d105p66s14f145d9
79Auзолото1s 22s 22p 63s 23p64s 23d104p65s24d105p66s14f145d10
80Hgртуть1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d10
81Tlталлий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p1
82Pbсвинец1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p2
83Biвисмут1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p3
84Poполоний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p4
85Atастат1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p5
86Rnрадон1s 22s 22p 63s 23p64s 23d104p65s14d105p66s24f145d106p6
VII период
87Frфранций1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s1
88Raрадий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s2
89Acактиний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s26d1
90Thторий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s26d25f0
91Paпротактиний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f26d1
92Uуран1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f36d1
93Npнептуний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f46d1
94Puплутоний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f56d1
95Amамериций1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f7
96Cmкюрий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f76d1
97Bkберклий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f86d1
98Cfкалифорний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f10
99Esэйнштейний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f11
100Fmфермий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f12
101Mdменделеевий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f13
102Noнобелий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f14
103Lrлоуренсий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d1
104Rfрезерфордий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d2
105Dbдубний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d3
106Sgсиборгий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d4
107Bhборий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d5
108Hsхассий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d6
109Mtмейтнерий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d7
s-элементыp-элементыd-элементыf-элементы

Источник: https://infotables.ru/khimiya/825-elektronnye-formuly-atomov-khimicheskikh-elementov

Строение атома. Строение электронных оболочек атомов первых 20 элементов Периодической системы Д.И. Менделеева – HIMI4KA

Электронная конфигурация
ОГЭ 2018 по химии › Подготовка к ОГЭ 2018

Атом — электронейтральная частица, состоящая из положительно заряженного ядра и отрицательно заряженных электронов. В центре атома находится положительно заряженное ядро. Оно занимает ничтожную часть пространства внутри атома, в нём сосредоточены весь положительный заряд и почти вся масса атома.

Ядро состоит из элементарных частиц — протона и нейтрона; вокруг атомного ядра по замкнутым орбиталям движутся электроны.

Протон (р) — элементарная частица с относительной массой 1,00728 атомной единицы массы и зарядом +1 условную единицу. Число протонов в атомном ядре равно порядковому номеру элемента в Периодической системе Д.И. Менделеева.

Нейтрон (n) — элементарная нейтральная частица с относительной массой 1,00866 атомной единицы массы (а. е. м.).

Число нейтронов в ядре N определяют по формуле:

где А — массовое число, Z — заряд ядра, равный числу протонов (порядковому номеру).

Обычно параметры ядра атома записывают следующим образом: слева внизу от символа элемента ставят заряд ядра, а вверху — массовое число, например:

Эта запись показывает, что заряд ядра (следовательно, и число протонов) для атома фосфора равен 15, массовое число равно 31, а число нейтронов равно 31 – 15 = 16. Так как массы протона и нейтрона очень мало отличаются друг от друга, то массовое число приблизительно равно относительной атомной массе ядра.

Электрон ( е–) — элементарная частица с массой 0,00055 а. е. м. и условным зарядом –1. Число электронов в атоме равно заряду ядра атома (порядковому номеру элемента в Периодической системе Д.И. Менделеева).

Электроны движутся вокруг ядра по строго определённым орбиталям, образуя так называемое электронное облако.

Область пространства вокруг атомного ядра, где наиболее (90 и более %) вероятно нахождение электрона, определяет форму электронного облака.

Электронное облако s-электрона имеет сферическую форму; на s-энергетическом подуровне может максимально находиться два электрона.

Электронное облако p-электрона имеет гантелеобразную форму; на трёх p-орбиталях максимально может находиться шесть электронов.

Орбитали изображают в виде квадрата, сверху или снизу которого пишут значения главного и побочного квантовых чисел, описывающих данную орбиталь. Такую запись называют графической электронной формулой, например:

В этой формуле стрелками обозначают электрон, а направление стрелки соответствует направлению спина — собственного магнитного момента электрона. Электроны с противоположными спинами ↑↓ называют спаренными.

Электронные конфигурации атомов элементов можно представить в виде электронных формул, в которых указывают символы подуровня, коэффициент перед символом подуровня показывает его принадлежность к данному уровню, а степень у символа — число электронов данного подуровня.

В таблице 1 приведено строение электронных оболочек атомов первых 20 элементов Периодической системы химических элементов Д.И. Менделеева.

Химические элементы, в атомах которых s-подуровень внешнего уровня пополняется одним или двумя электронами, называют s-элементами. Химические элементы, в атомах которых заполняется p-подуровень (от одного до шести электронов), называют p-элементами.

Число электронных слоёв в атоме химического элемента равно номеру периода.

В соответствии с правилом Хунда электроны располагаются на однотипных орбиталях одного энергетического уровня таким образом, чтобы суммарный спин был максимален.

Следовательно, при заполнении энергетического подуровня каждый электрон прежде всего занимает отдельную ячейку, а только после этого начинается их спаривание.

Например, у атома азота все p-электроны будут находиться в отдельных ячейках, а у кислорода начнётся их спаривание, которое полностью закончится у неона.

Изотопами называют атомы одного и того же элемента, содержащие в своих ядрах одинаковое число протонов, но различное число нейтронов.

Изотопы известны для всех элементов. Поэтому атомные массы элементов в периодической системе являются средним значением из массовых чисел природных смесей изотопов и отличаются от целочисленных значений.

Таким образом, атомная масса природной смеси изотопов не может служить главной характеристикой атома, а следовательно, и элемента.

Такой характеристикой атома является заряд ядра, определяющий число электронов в электронной оболочке атома и её строение.

Рассмотрим несколько типовых заданий по этому разделу.

Пример 1. Атом какого элемента имеет электронную конфигурацию 1s22s22p63s23p64s1?

На внешнем энергетическом уровне у данного элемента находится один 4s-электрон. Следовательно, этот химический элемент находится в четвёртом периоде первой группе главной подгруппе. Этот элемент — калий.

К этому ответу можно прийти по-другому. Сложив общее количество всех электронов, получим 19. Общее число электронов равно порядковому номеру элемента. Под номером 19 в периодической системе находится калий.

Пример 2. Химическому элементу соответствует высший оксид RO2. Электронной конфигурации внешнего энергетического уровня атома этого элемента соответствует электронная формула:

  1. ns2np4
  2. ns2np2
  3. ns2np3
  4. ns2np6

По формуле высшего оксида (смотрите на формулы высших оксидов в Периодической системе) устанавливаем, что этот химический элемент находится в четвёртой группе главной подгруппы. У этих элементов на внешнем энергетическом уровне находятся четыре электрона — два s и два p. Следовательно, правильный ответ 2.

Тренировочные задания

1. Общее число s-электронов в атоме кальция равно

1) 20 2) 40 3) 8

4) 6

2. Число спаренных p-электронов в атоме азота равно

1) 7 2) 14 3) 3

4) 4

3. Число неспаренных s-электронов в атоме азота равно

1) 7 2) 14 3) 3

4) 4

4. Число электронов на внешнем энергетическом уровне атома аргона равно

1) 18 2) 6 3) 4

4) 8

5. Число протонов, нейтронов и электронов в атоме 94Be равно

1) 9, 4, 5 2) 4, 5, 4 3) 4, 4, 5

4) 9, 5, 9

6. Распределение электронов по электронным слоям 2; 8; 4 — соответствует атому, расположенному в(во)

1) 3-м периоде, IА группе 2) 2-м периоде, IVА группе 3) 3-м периоде, IVА группе

4) 3-м периоде, VА группе

7. Химическому элементу, расположенному в 3-м периоде VA группе соответствует схема электронного строения атома

1) 2, 8, 6 2) 2, 6, 4 3) 2, 8, 5

4) 2, 8, 2

8. Химический элемент с электронной конфигурацией 1s22s22p4 образует летучее водородное соединение, формула которого

1) ЭН
2) ЭН2
3) ЭН3
4) ЭН4

9. Число электронных слоёв в атоме химического элемента равно

1) его порядковому номеру 2) номеру группы 3) числу нейтронов в ядре

4) номеру периода

10. Число внешних электронов в атомах химических элементов главных подгрупп равно

1) порядковому номеру элемента 2) номеру группы 3) числу нейтронов в ядре

4) номеру периода

11. Два электрона находятся во внешнем электронном слое атомов каждого из химических элементов в ряду

1) He, Be, Ba 2) Mg, Si, O 3) C, Mg, Ca

4) Ba, Sr, B

12. Химический элемент, электронная формула которого 1s22s22p63s23p64s1, образует оксид состава

1) Li2O 2) MgO

3) K2O

4) Na2O

13. Число электронных слоев и число p-электронов в атоме серы равно

1) 2, 6 2) 3, 4 3) 3, 16

4) 3, 10

14. Электронная конфигурация ns2np4 соответствует атому

1) хлора 2) серы 3) магния

4) кремния

15. Валентные электроны атома натрия в основном состоянии находятся на энергетическом подуровне

1) 2s 2) 2p 3) 3s

4) 3p

16. Атомы азота и фосфора имеют

1) одинаковое число нейтронов 2) одинаковое число протонов 3) одинаковую конфигурацию внешнего электронного слоя

4) одинаковое число электронов

17. Одинаковое число валентных электронов имеют атомы кальция и

1) калия 2) алюминия 3) бериллия

4) бора

18. Атомы углерода и фтора имеют

1) одинаковое число нейтронов 2) одинаковое число протонов 3) одинаковое число электронных слоёв

4) одинаковое число электронов

19. У атома углерода в основном состоянии число неспаренных электронов равно

1) 1 3) 3 2) 2

4) 4

20. В атоме кислорода в основном состоянии число спаренных электронов равно

1) 2 3) 4 2) 8

4) 6

Ответы

Источник: https://himi4ka.ru/ogje-2018-po-himii/urok-1-stroenie-atoma-stroenie-jelektronnyh-obolochek-atomov-pervyh-20-jelementov-periodicheskoj-sistemy-d-i-mendeleeva.html

Электронные конфигурации атомов

Электронная конфигурация

Заполнение орбиталей в не возбужденном атоме осуществляется таким образом, чтобы энергия атома была минимальной (принцип минимума энергии). Сначала заполняются орбитали первого энергетического уровня, затем второго, причем сначала заполняется орбиталь s-подуровня и лишь затем орбитали p-подуровня.

В 1925 г. швейцарский физик В. Паули установил фундаментальный квантово-механический принцип естествознания (принцип Паули, называемый также принципом запрета или принципом исключения).

В соответствии с принципом Паули:

в атоме не может быть двух электронов, имеющих одинаковый набор всех четырех квантовых чисел.

Электронную конфигурацию атома передают формулой, в которой указывают заполненные орбитали комбинацией цифры, равной главному квантовому числу, и буквы, соответствующей орбитальному квантовому числу. Верхним индексом указывают число электронов на Данных орбиталях.

    Электронная конфигурация атома водорода 1s1, а гелия 1s2. Атом водорода имеет один неспаренный электрон, а атом гелия — два спаренных электрона. Спаренные электроны имеют одинаковые значения всех квантовых чисел, кроме спинового.

Атом водорода может отдать свой электрон и превратиться в положительно заряженный ион — катион Н+ (протон), не имеющий электронов (электронная конфигурация 1s0).

Атом водорода может присоединить один электрон и превратиться в отрицательно заряженный ион Н- (гидрид-ион) с электронной конфигурацией 1s2.

Литий

Три электрона в атоме лития распределяются следующим образом: 1s21s1. В образовании химической связи участвуют электроны только внешнего энергетического уровня, называемые валентными.

У атома лития валентным является электрон 2s-подуровня, а два электрона 1s-подуровня — внутренние электроны. Атом лития достаточно легко теряет свой валентный электрон, переходя в ион Li+, имеющий конфигурацию 1s22s0.

Обратите внимание, что гидрид-ион, атом гелия и катион лития имеют одинаковое число электронов. Такие частицы называются изоэлектронными. Они имеют сходную электронную конфигурацию, но разный заряд ядра.

Атом гелия весьма инертен в химическом отношении, что связано с особой устойчивостью электронной конфигурации 1s2. Незаполненные электронами орбитали называют вакантными. В атоме лития три орбитали 2p-подуровня вакантные.
 

Бериллий

Электронная конфигурация атома бериллия — 1s22s2. При возбуждении атома электроны с более низкого энергетического подуровня переходят на вакантные орбитали более высокого энергетического подуровня. Процесс возбуждения атома бериллия можно передать следующей схемой:
 1s22s2 (основное состояние) + hν → 1s22s12p1 (возбужденное состояние).

Сравнение основного и возбужденного состояний атома бериллия показывает, что они различаются числом неспаренных электронов. В основном состоянии атома бериллия неспаренных электронов нет, в возбужденном их два.

Несмотря на то что при возбуждении атома в принципе любые электроны с более низких по энергии орбиталей могут переходить на более высокие орбитали, для рассмотрения химических процессов существенными являются только переходы между энергетическими подуровнями с близкой энергией. Это объясняется следующим. При образовании химической связи всегда выделяется энергия, т. е.

совокупность двух атомов переходит в энергетически более выгодное состояние. Процесс возбуждения требует затрат энергии. При распаривании электронов в пределах одного энергетического уровня затраты на возбуждение компенсируются за счет образования химической связи.

При распаривании электронов в пределах разных уровней затраты на возбуждение столь велики, что не могут быть компенсированы образованием химической связи. В отсутствие партнера по возможной химической реакции возбужденный атом выделяет квант энергии и возвращается в основное состояние — такой процесс называется релаксацией.

Бор

Пять электронов в атоме бора распределяются по орбиталям следующим образом: 1s22s22p1. Как следует из приведенной электронной конфигурации, атом бора имеет в основном состоянии один неспаренный электрон (на p-подуровне).

При возбуждении один из электронов с 2s-подуровня переходит на вакантную орбиталь 2p-подуровня, в результате чего в атоме появляются три неспаренных электрона.

Бор — пример электронодефицитного атома: число электронов в нем меньше числа орбиталей заполняемого энергетического подуровня.

Правило Гунда

Заполнение в невозбужденных атомах p, d- и f-подуровней осуществляется таким образом, чтобы мультиплетность атома была максимальной (правило Гунда).

Мультиплетность определяется числом неспаренных электронов: если такие электроны отсутствуют, то считают, что мультиплетность равна 1, и такое состояние атома называют синглетным; если имеется 1 неспаренный электрон, то мультиплетность равна 2 — дублетное состояние.

Триплетному состоянию (мультиплетность равна 3) соответствует наличие двух неспаренных электронов. Правило Гунда используют для определения электронных конфигураций некоторых атомов, начиная с атома углерода.

Энергетические ячейки

Электронную конфигурацию атомов часто представляют в форме энергетических ячеек. В этом случае чертой (или квадратом) обозначают каждую орбиталь. Чаще всего так обозначают только те орбитали, на которых находятся или могут находиться валентные электроны.

Электроны обозначают с помощью стрелок, направленных вверх (s = +½) или вниз (s = -½)- Неспаренный электрон и спаренные электроны изображают так:
  Без учета правила Гунда для основного состояния атома углерода можно предложить два варианта электронной конфигурации, отвечающих и принципу минимума энергии, и принципу Паули:
В соответствии с правилом Гунда основному состоянию атома углерода отвечает триплет. Таким образом, спаривание электронов возникает только после того, как на каждой орбитали данного подуровня уже находится по одному электрону.

При возбуждении атома углерода электрон с 2s-подуровня переходит на 2p-подуровень:

  Атом фтора имеет электронную конфигурацию [He]2s22p5. Имея только один неспаренный электрон, фтор может быть только одновалентным. Атом фтора легко присоединяет один электрон, превращаясь во фторид-ион с конфигурацией [He]2s22p6. Такую электронную конфигурацию имеет атом неона — благородного газа. Восьмиэлектронная оболочка 2s22p6 отвечает очень устойчивому состоянию. До настоящего времени не получено ни одного соединения неона.

Электронные конфигурации атомов элементов 3-го периода Периодической системы элементов будут в определенной степени аналогичны приведенным выше (нижним индексом указан атомный номер):

11Na [Ne]3s1
12Mg [Ne]3s2
13Al [Ne]3s23p1
14Si [Ne]2s22p2
15P [Ne]2s23p3
Однако аналогия не является полной, так как третий энергетический уровень расщепляется на три подуровня и у всех перечисленных элементов имеются вакантные d-орбитали, на которые могут при возбуждении переходить электроны, увеличивая мультиплетность. Особо это важно для таких элементов, как фосфор, сера и хлор.

Максимальное число неспаренных электронов в атоме фосфора может достигать пяти:

 
Этим объясняется возможность существования соединений, в которых валентность фосфора равна 5. Атом азота, имеющий конфигурацию валентных электронов в основном состоянии такую же, как и атом фосфора, образовать пять ковалентных связей не может.

Аналогичная ситуация возникает при сравнении валентных возможностей кислорода и серы, фтора и хлора. Распаривание электронов в атоме серы приводит к появлению шести неспаренных электронов:

  [Ne]3s23p4 (основное состояние) → [Ne]3s13p33d2 (возбужденное состояние).
Это отвечает шести валентному состоянию, которое для кислорода недостижимо. Максимальная валентность азота (4) и кислорода (3) требует более детального объяснения, которое будет приведено позднее.

Максимальная валентность хлора равна 7, что соответствует конфигурации возбужденного состояния атома [Ne]3s13p3d3.

Наличие вакантных Зd-орбиталей у всех элементов третьего периода объясняется тем, что, начиная с 3-го энергетического уровня, происходит частичное перекрывание подуровней разных уровней при заполнении электронами.

Так, 3d-подуровень начинает заполняться только после того, как будет заполнен 4s-подуровень.

Запас энергии электронов на атомных орбиталях разных подуровней и, следовательно, порядок их заполнения, возрастает в следующем порядке:

Раньше заполняются орбитали, для которых сумма первых двух квантовых чисел (n + l) меньше; при равенстве этих сумм сначала заполняются орбитали с меньшим главным квантовым числом. Эту закономерность сформулировал В. М. Клечковский в 1951 г.

Элементы, в атомах которых происходит заполнение электронами s-подуровня, называются s-элементами. К ним относятся по два первых элемента каждого периода: водород, гелий, все элементы IА (щелочные металлы) и IIА (бериллий, магний и щелочноземельные металлы) групп.

Элементы, в атомах которых происходит заполнение электронами p-подуровня, называются p-элементами. К ним относятся в каждом периоде (кроме первого) по шесть последних элементов, образующих группы IIIА — VIIIА.

Первый d-элемент — скандий — имеет электронную конфигурацию [Ar]4s23d1.

Электронные конфигурации следующих двух d-элементов не выходят за рамки общих представлений о строении электронных оболочек: 22Ti [Ar]4s23d2 и 23V[Ar]4s23d3.

 Максимальная валентность титана, равная 4, объясняется переходом в возбужденное состояние за счет распаривания электронов: [Ar]4s23d2 → [Ar]4s13d3. Аналогично для ванадия: [Ar]4s23d3 → [Ar]4s13d4 (максимальная валентность 5).

Однако уже у следующего d-элемента — хрома — наблюдается некоторое «отклонение» в расположении электронов по энергетическим уровням в основном состоянии: вместо ожидаемых четырех неспаренных электронов на 3d-подуровне в атоме хрома имеются пять неспаренных электронов на 3d-подуровне и один неспаренный электрон на s-подуровне: 24Cr [Ar]4s13d5.

Явление перехода одного s-электрона на d-подуровень часто называют «проскоком» электрона. Это можно объяснить тем, что орбитали заполняемого электронами d-подуровня становятся ближе к ядру вследствие усиления электростатического притяжения между электронами и ядром.

Вследствие этого состояние [Ar]4s13d5 становится энергетически более выгодным, чем [Ar]4s23d4. Таким образом, наполовину заполненный d-подуровень (d5) обладает повышенной стабильностью по сравнению с иными возможными вариантами распределения электронов.

Электронная конфигурация, отвечающая существованию максимально возможного числа распаренных электронов, достижимая у предшествующих d-элементов только в результате возбуждения, характерна для основного состояния атома хрома. Электронная конфигурация d5 характерна и для атома марганца: [Ar] 4s23d5.

У следующих d-элементов происходит заполнение каждой энергетической ячейки d-подуровня вторым электроном: 26Fe [Ar]4s23d6; 27Co [Ar]4s23d7; 28Ni [Ar]4s23d8.

У атома меди достижимым становится состояние полностью заполненного d-подуровня (d10) за счет перехода одного электрона с 4s-под-уровня на 3d-подуровень: 29Cu [Ar]4s13d10. Последний элемент первого ряда d-элементов имеет электронную конфигурацию 30Zn [Ar]4s23d10.

Общая тенденция, проявляющаяся в устойчивости d5 и d10 конфигурации, наблюдается и у элементов ниже лежащих периодов.

Молибден имеет электронную конфигурацию, аналогичную хрому: 42Mo [Kr]5s14d5, а серебро — меди: 47Ag[Kr]5s0d10.

 Более того, конфигурация d10 достигается уже у палладия за счет перехода обоих электронов с 5s-орбитали на 4d-орбиталь: 46Pd [Kr]5s0d10. Существуют и другие отклонения от монотонного заполнения d-, а также f-орбиталей.

Источник: https://chemiday.com/ru/encyclopedia/electronic_configuration

Электронная конфигурация

Электронная конфигурация

Состояние изолированного электрона в поле сил Кулона определяют, используя четыре квантовых числа:

  1. главное квантовое число $n=1,2,3,\dots $
  2. орбитальное квантовое число $l=0,1,2,3,\dots n-1.$
  3. магнитное квантовое число $m_l=-l,-l+1,\dots ,\ l-1,l.\ $
  4. спином $m_s=\pm \frac{1}{2}$.

Для первого приближения при характеристике состояния электрона в атоме применяют эти же квантовые числа, даже если учитывают взаимодействия между электронами.

Система из электронов в атоме, которые имеют одинаковые числа $n$ образуют оболочку атома. Оболочки обозначают буквенными символами (табл.1).

Рисунок 1.

Движение электрона по орбите обозначают буквами в соответствии с табл.2

Рисунок 2.

Электронную структуру записывают так: число, находящееся слева — главное квантовое число $(n)$, сам спектроскопический символ соответствует величине орбитального квантового числа ($l$).

Полное описание состояния атома требует вместе с указанием полных $L,S,J$ перечисления всех состояний электронов.

Так, например, запись: $1s2p3P_0$ обозначает состояние атома гелия, имеющего $L=1,S=1,J=0$ и два электрона в состояниях $1s$ и $2p$.

В том случае, если несколько электронов находятся в состояниях с одинаковыми $n\ и\ l\ $, то данный факт обозначают как степень. $2p3$ — три электрона в состоянии $2p$.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

О распределении электронов в атоме по состояниям с разными $n\ и\ l$ говорят как об электронной конфигурации.

При известных $n\ и\ l$ электрон может иметь разные значения проекций орбитального момента ($m_l$) и спина ($m_s$) на ось $Z$.

В качестве основания для строения электронных оболочек атомов используют:

  1. Принцип Паули: Атому не может принадлежать два электрона, которые бы характеризовались одинаковыми четверками квантовых чисел.

  2. Принцип минимума энергии: при известном суммарном числе электронов в атоме реализуется состояние с минимальной энергией. Принцип минимума энергии коррелирует с условием устойчивости атома.

Общее правило, которое описывает порядок заполнения электронных состояний — это правило Клечевского: В атоме со многими электронами первыми заполняются состояния с минимально возможной суммой ($n+l$), а для равных величин $(n+l$) состояния с минимальным $n$.

Электронную структуру атома записывают в виде электронной конфигурации с указанием числа электронов на каждой орбитали.

Иерархия взаимодействий в многоэлектронном атоме

В атоме с несколькими электронами выделяют $4$ основных вида взаимодействий. В зависимости от них применяется система классификации электронных состояний атома.

  1. Взаимодействие электронов с ядром при помощи сил Кулона.

  2. Меж электронное электростатическое взаимодействие.

  3. Спин — орбитальное взаимодействие.

  4. Взаимодействие электронов с внешним полем.

Для атома в нормальном состоянии самым сильным является взаимодействие электронов с ядром, оно является определяющим для существования атома или иона. Данное взаимодействие ответственно за грубое деление состояний электрона по уровням энергии, благодаря чему появляется возможность использования электронной конфигурации атомов.

Взаимодействие между электронами и спин-орбитальное взаимодействия являются более «тонкими». Эти взаимодействия определяют применяемую классификацию электронного состояния атома.

Если учитывать только меж электронное взаимодействие и не учитывать спин — орбитальное взаимодействие (при $E_{ee}\gg E_{LS\ \ },$ где $E_{ee}-\ $энергия взаимодействия электронов между собой, $E_{LS\ \ }\ $- энергия спин — орбитального взаимодействия) (при этом вводят термы в которых величины квадратов орбитального и спинового моментов суммы электронов в атоме определяются точно), то такая схема построения термов называется $LS$ — приближением (приближением Рассела — Саундерса). Данная схема реализуется не всегда. В приближении $LS$ связи понятия: конфигурация электронов — терм — состояние отражает иерархию взаимодействий в атоме: взаимодействие электронов с ядром — электростатическое взаимодействие электронов — спин-орбитальное взаимодействие. Как результат: взаимодействие электронов ведет к групповым состояниям электронной оболочки, при этом имеется определенное значение полного орбитального момента электронов $(L)$. В таком случае спины электронов не задействованы, и они складываются (независимо) в полный спин $S$. В случае необходимости далее учитывается спин-орбитальное взаимодействие, которое связывает полный орбитальный момент и полный спин и ведет к дополнительному расщеплению групповых состояний электронов по величине полного момента $J$.

Эмпирически показано, то приближение $LS$-связи хорошо применимо для несильно возбужденных состояний и не тяжелых атомов (до $Fe$). Термы при этом имеют обозначения: ${}{2S+1}{L_J.}$

В случае, если энергия спин —орбитального взаимодействия много больше, чем энергия электростатического взаимодействия электронов ($E_{LS}\gg E_{ee}$), то электростатическим взаимодействием электронов в атоме можно пренебречь.

В таком случае состояние каждого электрона определяют квантовыми числами ($j$, $m_j$). Если известны значения $j$ для всех электронов атома в известной конфигурации ($j=1,…N$), то считают, что известен терм атома в приближении $jj$ —связи.

Такой терм обозначают как:

Если в дальнейшем учитывают электростатическое взаимодействие электронов, то терм расщепляется на группу состояний, количество которых определено числом значений $J$ (возможные значения полного механического момента атомарной электронной оболочки):

При $jj$ — взаимодействии последовательность интенсивности взаимодействия следующая: взаимодействие электронов и ядра — спин — орбитальное взаимодействие — электростатическое взаимодействие.

Пример 1

Задание: Рассмотрите в рамках $LS$ — связи предельные случаи наложения внешнего магнитного поля.

Решение:

Пусть энергия взаимодействия электронов с внешним магнитным полем ($E_H$) много меньше энергии спин — орбитального взаимодействия ($E_{LS}$), (то есть $E_{LS}\gg E_H$). В таком случае говорят о эффекте Зеемана. Внешнее магнитное поле взаимодействует с полным магнитным моментом атома (J) при этом, оно расщепляет состояние по величине проекции $J_z\ $ на $2J+1$ составляющих.

Допустим, что энергия взаимодействия электронов с внешним магнитным полем ($E_H$) много больше энергии спин — орбитального взаимодействия ($E_{LS}$), (то есть $E_H\gg E_{LS}$).

В данном случае возникает эффект Пашена — Бака. При этом считают, что внешнее магнитное поле сильно на столько, что оно разрывает связь орбитального момента и спина.

Расщепление при этом происходит по параметру ($2L_z+S_z$).

В большом числе случаев, если внешнее поле составляет несколько Тесла, то проявляется эффект Зеемана, но так как параметры спин-орбитального взаимодействия атомов существенно отличаются, для легких атомов (например $Li$) в поле порядка $3$ Тл появляются спектры относящиеся к эффекту Пашена — Бака.

Пример 2

Задание: Составьте электронные конфигурации элементов от $H$ до $Ne$ периодической системы элементов и $K$.

Решение:

В начале периодической системы, когда количество электронов мало, роль их взаимодействия не является существенной. Заполнение электронных состояний идет по идеальной схеме. Так, водород имеет один электрон, его состояние имеет минимальную энергию ($n=1$), электронная конфигурация водорода: $1s.$

Следующий элемент таблицы Менделеева — гелий ($He$) имеет два электрона. Электроны находятся в состоянии $1s$, но имеют противоположные спины. Электронная конфигурация $He:$ $1s2$. Это так называемый парагелий.

У ортогелия спин второго электрона совпал по направлению с первым электроном и он не может находиться в состоянии $1s$. Ближайшее допускаемое по состояние электрона при этом будет $2s$. Электронная конфигурация ортогелия запишется как: $1s2s.

$ Инертный газ гелий заканчивает заполнение первой оболочки и он является последним в первом периоде элементов системы.

В литии ($Li$) заполняется вторая оболочка. В электронной конфигурации парагелия добавляется один электрон. Электрон добавляется в $2s$ — состояние, так как третьего электрона в $1s$ состоянии быть не может в соответствии с принципом Паули. Электронная конфигурация лития: $1s22s.

\ $ Следующий элемент периодической системы — бериллий ($Be$): $1s22s2$. Далее идет Бор (B): $1s22s22p.$ В $p$ — состоянии может пребывать $6$ электронов $(2(2+1)=6)$. При последовательном переходе от бора до неона включительно заполняются оболочки элементов $2p$ — состояния.

При этом имеем электронные конфигурации:

\[C:\ 1s22s22p2,\ N:1s22s22p3,\ O:1s22s22p4,\ F:1s22s22p5,\ Ne::1s22s22p6.\]

Инертным неоном завершается заполнение второй $L$- оболочки и второго периода.

В соответствии с идеальной схемой заполнения конфигурация $K$ должна быть: $1s22s22p63s23p63d$, но на самом деле это не так. С точки зрения энергии боле выгодным является состояние $4s$, а не $3d$. Этот факт подтвержден прямыми расчетами и экспериментально. Конфигурация калия имеет вид:

\[K:1s22s22p63s23p64s.\]

Источник: https://spravochnick.ru/fizika/predmet_i_zadachi_atomnoy_fiziki/elektronnaya_konfiguraciya/

Booksm
Добавить комментарий