Электромагнитные явления

Электромагнитные явления

Электромагнитные явления

Понятие электромагнитных явлений является совсем не новым. Если верить книгам, то электромагнитные явления начали активно исследовать и изучать еще со времен Фарадея. Конечно, с тех пор многое изменилось. К примеру, такой важный нюанс, как взаимодействие электропроводных жидкостей и электромагнитного поля, начали изучать лишь недавно.

Явление изучают всего несколько лет. Что же стало причиной изучения данного явления? Главным толчком, скорее всего, стала астрофизика. Дело в том, что уже на протяжении нескольких десятилетий ученые пытались доказать, что основная часть природной материи находится в состоянии высокоионизированного газа или плазмы.

Такое предположение активно изучалось. Астрофизические исследования помогли получить важные сведения и сделать открытия, которые и повлияли на дальнейший ход событий. Чтобы разобраться, что же такое магнитные явления и в чем их особенность, нужно хорошо знать астрофизику.

Дело в том, что в этой науке очень важная роль отводится именно электромагнитным явлениям. Магнитные поля существуют в космосе и прямо воздействуют на заряженные частицы, а именно на их движение. Первые сведения об электромагнитных явлениях появились в девятнадцатом веке. Они применялись для передачи информации.

Суть такой телеграфии была очень простой. Создавались сообщение из цифр и букв, оно передавалось при помощи набора знаков.

Электромагнитные явления определяются закономерностями. Они существенно отличаются от механической. В электронных устройствах электромагнитные явления характеризуются несложными взаимоотношениями и отличаются конкретными величинами.

Эти величины зависят от ряда параметров, а точнее, координат в пространстве и времени. Правда, стоит отметить, что такое определение является слишком обширным. Более точно изучить явление удается при помощи электронных устройств.

Электромагнитные явления никогда не считались автономным процессом или явлением. Именно поэтому их всегда изучали и исследовали в комплексе с другими физическими и природными процессами. Именно активное изучение механических и электромагнитных явлений со временем привело к появлению известной даже школьникам теории относительности.

Теория буквально перевернула мир науки. Это и, так называемое, четырехмерное пространство, и время были представлены единым многообразием, а его разделение на отдельные категории пространства и времени всегда считалось достаточно условным понятием.

Одна из ключевых особенностей электромагнитных явлений в системе характеризуется изменением характеристик и качеств заготовок в процессе перехода от одной заготовки к другой.

Ученые утверждают, что первичные заготовки со временем были полностью ферримагнитными, далее процесс кардинально изменился и остальные заготовки уже были или частично ферримагнитными, либо же вовсе немагнитными. Если рассмотреть электромагнитные явления примеры, то можно найти много подтверждений этому важному тезису.

Изучение электромагнитных явлений – процесс длительный и непростой. Им занималось огромное количество ученых во всем мире. Процесс требовал постоянного труда, напряженного мышления и воображения. Но результат того стоил.

Многие электромагнитные явления формулы позволили совсем по-другому взглянуть на природные явления и физические процессы. Для того, чтобы выработать грамотное материалистичное понимание процессов, которые связаны с электромагнитными явлениями, нужно было в постоянном режиме использовать советской литературу по физике.

В этих книгах можно было найти немало нужной и полезной информации даже для современных ученых и исследователей.

В процессе активного изучения учеными электромагнитных явлений было определено, что электрический ток и магнитное поле всегда идут вместе, существовать отдельно они просто не могут. В развитие теории электромагнитных явлений, если верить книгам, наибольший вклад внесли такие ученые, как Максвелл и Фарадей.

Многие первые исследования электромагнитных явлений, которые и положили начало дальнейшим исследованиям, принадлежат именно этим двум физикам.

Кто знает, как бы развернулись события, если бы они не начали изучать электромагнитные явления в свое время? Только после того как Максвелл создал теорию электромагнитного поля другие ученые начали говорить о том, чтобы создать электромагнитную мировую картину, которую бы использовали во всем мире, которая всем была бы понятна.

Ученому удалось практически в одиночку разработать действительно сложнейшую теорию электромагнитного поля на основе электромагнитной индукции.

Он был не просто теоретиком, а проводил успешные практические эксперименты с магнитной стрелкой и со временем пришел к совершенно правильному выводу, что ее вращение обусловлено не зарядами, а состоянием окружающей среды. После этого открытия ученый вводит понятие поля. Эти понятия до сих пор активно используются современными учеными. Теория электромагнитного поля, что была создана Максвеллом стала новым этапом в развитии физической науки, которая существенно повлияла на развитие современной физики.

Электрические силы по многим характеристикам отличаются от магнитных. Прежде всего, первые – соотносятся, как с движущими, так и с покоящими зарядами, а вторые – только с движущими. Ученые утверждают, что в этом и представляется их основное отличие.

Различные варианты зарядов, а также сил детально описаны в работах Максвелла, что стали в будущем основной классической электродинамики. Их активно используют и современные физики. Эти уравнения положили начало закону Кулона, который практически идентичен закону всемирного тяготения Ньютона.

Закон Кулона выглядит следующим образом:

В то время, как закон всемирного тяготения Ньютона выглядит следующим образом:

Также закон Ньютона, который хорошо знаком всем современным школьникам, утверждает: магнитные силовые линии являются непрерывными, не имеют начала и конца. Активное изучение электромагнитных явлений кардинально повлияло на дальнейшее изучение материи, а также на представление о ней. Существует два вида электрических зарядов:

  • это положительные заряды, их носителями есть протоны;
  • а также отрицательные заряды, их носителями есть электроны.

Атом состоит из ядра, который, в свою очередь, состоит из нейтронов, электронов и протонов. Если же атом отдает или получает электроны, он автоматически превращается в ион. На данный момент существует всего пара вариантов электризации: при помощи трения; а также при помощи влияния.

По поводу применения электромагнитных явлений есть немало интересных фактов. Сохранились старинные записи, в которых содержатся прямые доказательства того, что еще в древнейшие времена активно использовали знания об электромагнитных явлениях. К примеру, императора Нерона, который страдал от тяжелой формы ревматизма, еще тогда лечили электрованнами.

Согласитесь, что даже сейчас такой метод есть далеко не в каждой клинике. В те времена такой метод лечения считался более чем инновационным. В чем же его суть и как проводили процедуру древние целители? В деревянную емкость с водой были помещены электрически скаты. Больной человек ложился в такую ванную и подвергался действию электрических полей и зарядов.

Результат лечения можно было увидеть достаточно быстро. Подобные методы лечения есть и в наше время. К примеру, в Швейцарии в прошлом столетии была изобретена электрическая няня. Это недешевое, но очень полезное изобретение, которое оценили многие родители.

Под детские пеленки или матрасики подкладывались специальные изолированные металлические сети, они разделялись между собой сухой подкладкой. Когда ребенок делал свои дела и подкладка становилась мокрой, цепь замыкалась, и тут срабатывал звонок. Это давало возможность родителям вовремя прибежать на помощь младенцу.

Матери и отцы сразу знали, когда нужно заменить пеленку своему ребенку. Электромагнитные явления активно применялись в местности, где большую часть года – холода и морозы. В таких регионах существовала достаточно серьезная проблема со сливом нефтепродуктов. Она возникала из-за того, что при низких температурах увеличивалась вязкость нефтепродуктов.

Чтобы решить эту проблему, ученые разработали технологию электроиндукционного нагрева емкостей, что дало возможность в разы сократить энергозатраты. Такая технология оказалась очень эффективной, и помогла быстро справиться с неприятной проблемой. При помощи электромагнитных явлений можно было определить даже отпечатки пальцев конкретного человека, который держал в руках гильзы.

Для этого нужно было поместить гильзу в электрическое поле в виде электрода, на него в вакууме напылялась специальная металлическая пленка, на ней проявлялись отпечатки пальцев. Таким образом, процесс идентификации человека становился очень быстрым и простым.

Источник: https://sciterm.ru/spravochnik/elektromagnitnie-yavleniya/

Повторение темы

Электромагнитные явления

При изучении данной темы мы узнали о существовании различных электрических и магнитных явлений, объяснили причины их возникновения, а также рассмотрели связь между электричеством и магнетизмом. На этом уроке мы обобщим полученные знания.

Рассмотрим основные сведения об электромагнитной картине мира, пришедшей на смену механической, основоположником которой был Ньютон. В XIX веке продолжались попытки описывать различные электромагнитные явления с помощью механической картины мира, однако это не удавалось, поскольку электромагнитные явления сильно отличаются от механических процессов.

Наибольший вклад в развитие теории электромагнитных явлений внесли учёные Фарадей и Максвелл. Лишь после создания Максвеллом теории электромагнитного поля можно говорить о создании электромагнитной картины мира.

Теорию электромагнитного поля Максвелл разработал на основе явления электромагнитной индукции открытого Фарадеем, который, проводя эксперименты (см. рис. 1) с магнитной стрелкой, пришёл к выводу, что вращение магнитной стрелки обусловлено не электрическими зарядами в проводнике, а особым состоянием окружающей стрелку среды.

В связи с этим учёный ввёл понятие поля как множество магнитных силовых линий, пронизывающих пространство и способных определять и направлять электрический ток.

Рис. 1. Эксперимент Фарадея

Теория электромагнитного поля Максвелла сводится к тому, что изменяющееся магнитное поле вызывает появление не только в окружающих телах, но и вакууме вихревого электрического поля, которое вызывает появление магнитного поля. Эта теория является новым этапом в развитии физики. Согласно этой теории весь мир является единой электродинамической системой, состоящей из заряженных частиц, которые взаимодействуют с помощью электромагнитного поля.

Когда электрические заряды движутся друг относительно друга, появляется дополнительная магнитная сила. Объединение электрической и магнитной силы получило название электромагнитной силы.

Таким образом, электрические силы соотносятся с покоящимися и движущимися зарядами, а магнитные – с движущимися. Всё это многообразие сил и зарядов описывается уравнениями Максвелла, то есть уравнениями классической электродинамики.

Из этих уравнений вытекает закон Кулона, который аналогичен закону всемирного тяготения Ньютона:  – закон Кулона,  – закон тяготения Ньютона, а также следующие утверждения:

— магнитные силовые линии непрерывны и не имеют ни начала, ни конца;

— магнитных зарядов не существует;

— электрическое поле создаётся электрическими зарядами и переменным магнитным полем;

— магнитное поле может создаваться как электрическим током, так и переменным электрическим полем.

Электромагнитная картина мира кардинально изменила представления о материи. Совокупность неделимых атомов перестала быть конечным пределом делимости материи. Согласно этой картине мира существует два вида материи: вещество и поле – они строго разделены и не могут превращаться друг в друга.

Электромагнитная картина мира объяснила широкий круг явлений, которые не могла объяснить механическая, однако дальнейшее развитие науки показало, что и эта картина несовершенна. Таким образом, появилась новая квантово-полевая картина мира.

1) Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитное взаимодействие.

2) Существует два рода электрических зарядов:

положительные (носители – протоны)

отрицательные (носители – электроны)

3) Атом (см. рис. 2) состоит из ядра, которое состоит из протонов и нейтронов, а также электронов. Если атом отдаёт или получает несколько электронов, то превращается в ион.

Рис. 2. Атом

4) Процесс приобретения заряда макроскопическим телом называется электризацией. Существует два способа электризации:

— через трение;

— через влияние.

5) Электрическое поле – это особая форма материи, которая существует вокруг заряженных тел и частиц и действует с некоторой силой на другие частицы и тела, имеющий заряд.

6) Основные законы электростатики:

— закон Кулона для неподвижных точечных зарядов:

— закон сохранения заряда для замкнутой системы:

7) Электрический ток – это направленное движения частиц, имеющих электрический заряд.

Условия существования электрического тока:

— наличие свободных частиц, имеющих заряд;

— наличие электрического поля.

8) Действие электрического тока:

— тепловое;

— магнитное;

— химическое;

— световое.

9) Электрическое поле создаётся источниками тока (см. рис. 3), в которых происходит работа по разделению зарядов за счёт преобразования различных видов энергии в энергию электрического поля.

Рис. 3. Источники тока (Источник)

10) Характеристики участка цепи:

— сила тока – , измеряется с помощью амперметра;

— напряжение – , измеряется вольтметром;

— сопротивление – , измеряется омметром.

11) Закон Ома для участка цепи: .

12) Два вида соединения проводников:

— последовательное (см. рис. 4)

Рис. 4. Последовательное соединения проводников

— параллельное (см. рис. 5)

Рис. 5. Параллельное соединение проводников

13) Работа тока: .

14) Мощность тока: .

15) Количество теплоты, которая выделяется при прохождении тока через проводник: .

16) Электрический ток в различных средах:

— в металлах происходит направленное движение свободных электронов;

— в жидкостях – направленное движение свободных ионов, образующихся в результате электролитической диссоциации. Закон электролиза:

— в газах – направленное движение свободных ионов и электронов, образующихся в

результате ионизации;

в полупроводниках – направленное движение свободных электронов и дырок;

17) Магниты:

— электромагниты;

— постоянные:

природные;

искусственные.

18) Вокруг любой заряженной частицы, а следовательно, вокруг проводника с током существует магнитное поле.

19) Магнитное поле – особая форма материи, которая существует вокруг движущихся заряженных частиц или тел и действует с некоторой силой на другие заряженные частицы или тела, движущиеся в этом поле.

20) Линии магнитного поля – условные линии, вдоль которых в магнитном поле устанавливаются оси маленьких магнитных стрелок:

— направление линий магнитного поля совпадает с направлением, на которое указывает северный полюс магнитной стрелки (см. рис. 6);

Рис. 6. Направление линии магнитного поля

— направление линий магнитного поля проводника с током можно определить с помощью правила правой руки или правила буравчика (см. рис. 7);

— линии магнитного выходят из северного полюса и входят в южный полюс;

— линии магнитного поля всегда замкнуты.

21) На проводник с током в магнитном поле действует сила Ампера. Её направление определяется по правилу левой руки (см. рис. 8).

Рис. 7. Правило правой руки и правило буравчика

Рис. 8. Правило левой руки

22) Явление электромагнитной индукции – явление порождения в пространстве электрического поля переменным магнитным полем.

На этом уроке мы вспомнили различные факты, касающиеся электромагнитных явлений, изученных ранее, а также обсудили общую электромагнитную картину мира.

Впервые вне лаборатории электрическая дуга была применена в 1845 году в Парижской национальной опере, чтобы воспроизвести эффект восходящего солнца.

В Таиланде при строительстве линий электропередач возникли проблемы. Первая касалась того, что обезьяны, подражая электромонтёрам, по опорам забираются на провода и, запутывая их, создают короткое замыкание. Слоны представляли собой вторую проблему, так как они вырывали опоры из земли.

Магнитное поле Земли периодически меняет свою полярность, совершая как вековые колебания, длительностью 5–10 тыс.

лет, так и полностью переориентируясь (меняются местами магнитные полюса) 2–3 раза в течение миллиона лет. Об этом свидетельствуют «вмороженное» магнитное поле в осадочные и вулканические породы далёких эпох.

Однако геомагнитное поле Земли не совершает хаотических изменений, а подчиняется определённому расписанию.

В древних архивах сохранились записи, свидетельствующие о том, что императора Нерона, страдавшего ревматизмом, лечили электрованнами. Для этого в деревянную кадку с водой помещали электрических скатов. Находясь в такой ванне, император подвергался действию электрических разрядов и полей.

В прошлом веке в Швейцарии была изобретена электрическая няня. Изобретатель предложил подкладывать под детские пелёнки две изолированные металлические сетки, разделённые сухой прокладкой. Эти сетки были соединены с низковольтным источником тока, а также с электрическим звонком. Когда прокладка намокала, цепь замыкалась, и звонок сообщал матери о необходимости сменить пелёнку.

В тех регионах России, где бывают сильные морозы зимой, возникает проблема слива нефтепродуктов из железнодорожных цистерн, так как вязкость нефтепродуктов при низкой температуре слишком высокая.

Учёные дальневосточных институтов разработали технологию электроиндукционного нагрева цистерн (см. рис.

9), позволяющую значительно сократить энергозатраты, так как для разогревания цистерн паром необходимо около 15 тонн топлива.

Рис. 9. Электроиндукционный нагрев цистерн

Для аварийных ситуаций, когда замерзают системы отопления и водоснабжения, разработан ручной электроиндукционный инструмент, обеспечивающий быстрый разогрев трубопроводов и высокую безопасность работ.

Даже на стреляных гильзах и патронах сохраняются отпечатки пальцев, уложившего их в оружие человека.

Эти отпечатки могут быть выявлены по методике, разработанной специалистами Саратовского юридического института.

Поместив гильзу или патрон в электрическое поле в качестве электрода, напыляют на него в вакууме тонкую металлическую плёнку, и на ней становятся видны отпечатки, которые возможно идентифицировать.

Задача 1

На каком из рисунков правильно изображены полюсы магнитов (см. рис. 10)?

Рис. 10. Иллюстрация к задаче

Решение

Магнитными линиями для постоянного магнита называются линии, которые начинаются на северном магнитном полюсе и заканчиваются на южном, вне самого магнита. Внутри магнита эти линии замыкаются, но уже направлены от южного полюса к северному магнитному полюсу.

На первом рисунке полюсы изображены неправильно, так как магнитные линии направлены от южного полюса к северному.

На втором рисунке полюсы изображены неправильно, так как магнитные линии направлены от южного полюса к северному.

На третьем рисунке полюсы изображены верно, так как магнитные линии направлены от северного полюса к южному.

На четвёртом рисунке, по всей вероятности, имелись в виду два каких-то одинаковых полюса.

Ответ: на третьем рисунке полюсы изображены верно.

Попробуйте самостоятельно ответить на такой вопрос: в какой из этих точек действие магнита самое сильное, а в каких – самое маленькое (см. рис. 11)?

Рис. 11. Иллюстрация к задаче

Решить эту задачу можно, вспомнив, как распределяются магнитные линии в пространстве возле постоянного магнита.

Список рекомендованной литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. – М.: Мнемозина.
  2. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. – М.: Просвещение.

Рекомендованные ссылки на ресурсы сети Интернет

  1. Class-fizika.narod.ru (Источник).
  2. Clck.ru (Источник).
  3. Clck.ru (Источник).

Домашнее задание

  1. Что подтверждает существование магнитного поля Земли?
  2. Дайте определение магнитных линий. Что представляют собой магнитные линии прямого тока, катушки с током?
  3. Что дало науке создание электромагнитной картины мира?
  4. Сила Ампера. Правило левой руки.
  5. На железный проводник длиной 10 м и сечением 2 мм2 подано напряжение 12 мВ. Чему равна сила тока, протекающего по проводнику?
  6. Электрические лампы сопротивлением 200 Ом и 400 Ом соединены параллельно и подключены к источнику тока. Как соотносятся количества теплоты Q1 и Q2, выделяемые лампами за одно и то же время?

Источник: https://interneturok.ru/lesson/physics/8-klass/belektricheskie-yavleniyab/povtorenie-temy-elektromagnitnye-yavleniya-grebenyuk-yu-v

Роль электромагнитных явлений в физике

В космической физике главная роль принадлежит электромагнитным явлениям, поскольку в космосе существуют магнитные поля, которые прямым образом воздействуют на движение заряженных частиц. Электромагнитные силы при определенных условиях в разы превосходят гравитационные.

Впервые электромагнитные явления были применены для передачи информации. В XIX столетии создается телеграфия. Ее суть была очень проста: любое сообщение, что состояло из цифр и букв, может передаваться при помощи набора знаков, то есть сообщение кодируется.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Все электромагнитные явления подчинены определенным закономерностям, которые характеризуют электромагнитную форму движения материи, что кардинально отличается от механической.

В электронных устройствах электромагнитные явления описаны сложными взаимоотношениями и характеризуются величинами, что зависят от пространственных координат и времени.

Но такое описание является слишком обширным при исследовании сложных электронных устройств.

Электромагнитные явления не считались автономными. Благодаря усилию многих ученых данные явления были сведены к механическим. Изучение механики и электромагнитных явлений привело к формированию теории относительности: тут четырехмерное пространство и время были представлены единым многообразием, а его разделение на пространство и время – условным.

особенность электромагнитных явлений в системе определена изменением свойств заготовок, при переходе от одной заготовки к другой. Первичные заготовки были полностью ферримагнитными, а остальные либо частично ферримагнитными, либо вовсе немагнитными.

Изучение электромагнитных явлений требовало длительного непрерывного труда и напряжения воображения.

Для того чтобы выработать правильное материалистичное понимание процессов, необходимо постоянно руководствоваться советской литературой по физике.

В процессе изучения электромагнитных явлений было определено, что вокруг электрического тока всегда существовало магнитное поле. Поле и электрический ток неотделимы друг от друга.

В развитие теории электромагнитных явлений наибольший вклад внесли Максвелл и Фарадей. Только после того как Максвелл создал теорию электромагнитного поля говорилось о создании электромагнитной мировой картины. Ученый разработал теорию электромагнитного поля на основе электромагнитной индукции, что была открыта Фарадеем.

Он, в свою очередь, проводил эксперименты с магнитной стрелкой и пришел к выводу, что вращение стрелки обусловлено особым состоянием окружающей среды, а не электрическими зарядами в проводнике.

После этого ученый вводит понятие поля, как множества магнитных линий, что пронизывают пространство и способны выявлять и направлять электрический ток.

Теория электромагнитного поля, что была создана Максвеллом, сводилась к тому, что трансформирующееся магнитное поле вызывает появление вихревого электрического поля не только в окружающих телах, но и вакууме.

Эта теория стала новым этапом в развитии физической науки.

В соответствии с ней, весь мир – это электродинамическая система, которая состоит из заряженных частиц, что взаимодействуют друг с другом при помощи электромагнитного поля.

Электрические заряды движутся относительно друг друга, вследствие чего возникает дополнительная магнитная сила. Электромагнитная сила – это объединение магнитной и электрической силы.

Электрические силы соотносятся с движущимися и покоящимися зарядами, а магнитные – только с движущими.

Многообразие зарядов и сил описаны в уравнениях Максвелла, что стали в будущем уравнениями классической электродинамики.

Эти уравнения положили начало закону Кулона, который идентичен закону всемирного тяготения Ньютона. Закон Кулона выглядит следующим образом:

$F_k = k\frac{q_1q_2}{r{2}}$

Закон всемирного тяготения Ньютона выглядит следующим образом:

$F_H = G\frac{m_1m_2}{R{2}}$

Также закон Ньютона имеет следующие утверждения:

  • магнитные силовые линии не имеют начала и конца, а также они абсолютно непрерывны;
  • магнитных зарядов в природе не существует;
  • электрическое поле формируется при помощи электрических зарядов и переменного магнитного поля;
  • магнитное поле может формироваться как при помощи переменного электрического поля, так и с помощью электрического тока.

Электромагнитные явления кардинальным образом изменили представление о материи.

Электромагнитные явления. Основные термины и формулы

Определение 1

Электрический заряд – это величина, которая характеризует свойство тел и частиц вступать в электромагнитное взаимодействие.

Существует два вида электрических зарядов:

  • положительные заряды, носителями которых являются протоны;
  • отрицательные заряды, носителями которых являются электроны.

Атом состоит из ядра, который, в свою очередь, состоит из нейтронов, электронов и протонов. Атом превращается в ион, если он получает или отдает несколько электронов.

Определение 2

Электризация – это процесс приобретения заряда при помощи макроскопического тела.

На данный момент существует несколько способов электризации:

  • при помощи трения;
  • при помощи влияния.

Определение 3

Электрическое поле – это форма материи, что существует вокруг заряженных частиц и тел, и действует на другие частицы, что имеют заряд.

Основными законами электростатики являются:

  1. Закон Кулона для неподвижных зарядов: $F_k = k\frac{q_1q_2}{r{2}}$
  2. Закон сохранения заряда (для замкнутой системы): $ q_1 + q_2… + q_n = const $

Определение 4

Электрический ток – это направленное движение частиц, которые имеют электрический заряд.

Есть несколько условий, которые обеспечивают существование электрического тока:

  • наличие свободных частиц, которые имеют заряд;
  • наличие электрического поля.

Действие электрического поля может быть:

  • тепловым;
  • магнитным;
  • химическим;
  • световым.

Электрическое поле формируется при помощи источников тока, в которых осуществляется работа по разделению зарядов. Это происходит за счет преобразования нескольких видов энергии в энергию электрического поля.

К характеристикам участка цепи можно отнести:

  1. Силу тока: $I = \frac {q}{t}=A (ампер)$ — измерение осуществляется при помощи амперметра.
  2. Напряжение: $U = \frac{A}{q}= В (вольт)$ — измеряется при помощи вольтметра.
  3. Сопротивление: $R = p\frac{l}{S} = Ом$ — измеряется при помощи омметра.

Закон Ома для участка цепи выглядит следующим образом:

$I = \frac{U}{R}$

Существует два вида соединения проводников: последовательное и параллельное. Последовательное соединение проводников выглядит следующим образом:

  1. $I = I_1 = I_2 =…= I_n$
  2. $U = U_1 + U_2+…+U_n$
  3. $R = R_1 + R_2 +…+ R_n$

Параллельное соединение проводников выглядит следующим образом:

  1. $ I = I_1+I_2+…+I_n$
  2. $U = U_1 = U_2 =…= U_n$
  3. $ \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} +…+ \frac{1}{R_n}$

Работа тока: $A = Ult$

Мощность тока выглядит так: $P = IU$

Количество теплоты, что выделяется при прохождении сквозь проводник тока можно выразить следующим образом: $Q = I2 Rt$

Электрический ток может существовать в различных средах:

  1. В металлах осуществляется направленное движение свободных электронов.
  2. В жидкостях происходит направленное движение свободных ионов, которые образуются в результате электролитической диссоциации. Закон электролиза выглядит следующим образом: $m = qk = klt$
  3. В газах происходит направленное движение электронов и ионов, что образуется в результате ионизации.
  4. В полупроводниках – направленное движение свободных дырок и электронов.

Определение 5

Магнитное поле – это особая форма материи, существующая вокруг заряженных движущихся частиц и тел, и действует на другие заряженные частицы и тела, что движутся в этом же поле.

Линии магнитного поля – это условные линии, вдоль которых устанавливаются оси магнитных стрелок в магнитном поле.

Интересные факты применения электромагнитных явлений

Сохранились записи, которые подтверждают, что в древние времена императора Нерона, что страдал ревматизмом, лечили электрованнами. Суть такого лечения заключалась в следующем: в деревянную кадку с водой были помещены электрически скаты. Находясь в такой ванной, человек подвергался действию электрических полей и зарядов.

В Швейцарии в прошлом столетии была изобретена электрическая няня. Под детские пеленки подкладывались изолированные металлические сети, что разделялись сухой подкладкой. Эти сети соединялись с низковольтным источником тока и с электрическим звонком. Когда подкладка становилась мокрой, цепь замыкалась, и срабатывал звонок. Это позволяло матерям сразу знать, когда нужно заменить пеленку.

В тех регионах, где встречаются сильные морозы, существовала проблема слива нефтепродуктов, поскольку их вязкость при низких температурах была слишком высокая. Тогда ученые разработали технологию электроиндукционного нагрева цистерн, которая позволяла сократить энергозатраты.

При помощи электромагнитных явлений можно было определить отпечатки пальцев человека, что держал в руках гильзы и патроны. Поместив гильзу в электрическое поле в виде электрода, на него в вакууме напылялась металлическая пленка, на которой проявлялись отпечатки пальцев, что легко поддавались идентификации.

Источник: https://spravochnick.ru/fizika/elektromagnitnye_yavleniya/

Booksm
Добавить комментарий