Электромагнитное поле

Что такое электромагнитные поля?

Электромагнитное поле

Электрические поля возникают за счет разницы напряжений: чем больше электрическое напряжение, тем более сильным будет возникающее поле. Магнитные поля возникают там, где проходит электрический ток: чем сильнее ток, тем сильнее магнитное поле. Электрическое поле есть даже при отсутствии электрического тока.

Если имеется электрический ток, то сила магнитного поля будет меняться в зависимости от расхода электроэнергии, а сила электрического поля остается при этом постоянной.
(Выдержка из брошюры «Электромагнитные поля», опубликованной Европейским региональным бюро ВОЗ в 1999 г.

(серия справочных брошюр для местных органов власти по вопросам здоровья и окружающей среды; 32).

Электромагнитные поля (ЭМП) окружают нас повсюду, оставаясь при этом невидимыми человеческому глазу. Электрические поля образуются при возникновении в атмосфере электрических зарядов, вызванных грозой. Магнитное поле Земли заставляет иглу компаса всегда указывать направление «север–юг» и помогает птицам и рыбам ориентироваться в пространстве.

Помимо ЭМП, возникающих за счет природных источников, в спектре электромагнитных полей есть и те, которые создаются антропогенными источниками: например, рентгеновские лучи, используемые для диагностирования переломов конечностей в результате спортивных травм. Электричество в каждой штепсельной розетке ведет к образованию сопутствующих ЭМП низкой частоты. Различные радиоволны более высокой частоты используются для передачи информации при помощи ТВ антенн, радиостанций или базовых станций мобильной связи.

Что лежит в основе различий между электромагнитными полями?
Одна из основных характеристик электромагнитного поля – это его частота или соответствующая длина волны. Поля различной частоты воздействуют на организм по-разному.

Вы можете попытаться представить электромагнитные волны в виде череды регулярно повторяющихся волн огромной скорости, равной скорости света. Частота – это показатель, который просто указывает число колебаний или циклов в секунду, а термин «длина волны» используется для определения расстояния между следующими одна за другой волнами.

Следовательно, длина и частота волны тесно взаимосвязаны: чем выше частота, тем короче длина волны.

Проведение простого сравнения поможет лучше проиллюстрировать вышеизложенное: привяжите длинную веревку к дверной ручке, а свободный конец веревки держите в руке.

Если вы будете медленно поднимать и опускать руку с веревкой, то образуется одна большая волна; если же движения будут более быстрыми, то это приведет к возникновению целой серии небольших волн.

Длина веревки при этом остается постоянной, а значит, чем больше волн вы создадите (то есть, волн более высокой частоты), тем меньше будет расстояние между ними (то есть, длина волны будет короче).

В чем разница между неионизирующими электромагнитными полями и ионизирующим излучением?
Длина и частота волны определяют и другую важную характеристику электромагнитных полей: электромагнитные волны (колебания) переносятся частицами, называемыми квантами.

Кванты волн более высокой частоты (и более короткой длины) переносят больше энергии, чем поля более низкой чистоты (с более длинной волной). Некоторые электромагнитные волны несут такое огромное количество энергии в расчете на один квант, что они способны разорвать связи, удерживающие молекулы между собой.

В электромагнитном спектре таким свойством обладают излучаемые радиоактивными веществами гамма-лучи, космические и рентгеновские лучи. Все они характеризуются как «ионизирующее излучение».

Те поля, кванты которых не в состоянии разорвать связи, удерживающие молекулы между собой, называют «неионизирующим излучением».

Антропогенные источники электромагнитных полей, в значительной степени определяющие жизнь в индустриальном обществе (электричество, микроволны, а также радиоволны), находятся в той части электромагнитного спектра, который характеризуется относительно длинными и низкочастотными волнами, а значит, их кванты не в состоянии разорвать химические связи.

Электрические поля существуют повсюду, где есть положительный или отрицательный электрический заряд. Они с силой воздействуют на другие заряды внутри поля. Сила электрического поля измеряется в вольтах на метр (В/м).

Любой электрический провод, находящийся под напряжением, будет создавать сопутствующее электрическое поле, которое будет существовать даже при отсутствии тока.

Чем выше напряжение, тем сильнее электрическое поле на заданном расстоянии от провода.

Наиболее сильными являются электрические поля в непосредственной близости от источника заряда или провода под напряжением, а по мере удаления от них сила электрических полей быстро уменьшается. Проводники, например, металлы, являются очень эффективной защитой от электрических полей.

Другие материалы, например строительные материалы или деревья, обеспечивают некоторую защиту. Таким образом, сила электрических полей, образующихся от линий электропередач вне пределов дома, снижается за счет стен, зданий и деревьев.

Если линии электропередач проложены под землей, электрические поля на поверхности едва определяются.

Магнитные поля возникают вокруг движущихся электрических зарядов.

Сила магнитного поля измеряется в амперах на метр (А/м); однако вместо этого, при исследовании электромагнитных полей, ученые обычно указывают «родственный» количественный показатель – единицу измерения индукции магнитного поля (микротесла, мкТл). В отличие от электрических полей, магнитные поля возникают лишь при включении приборов и наличии тока. Чем сильнее электрический ток, тем сильнее магнитное поле.

Как и электрические поля, магнитные поля наиболее сильны в непосредственной близости от их источника, а по мере удаления от него, они ослабевают. Обычные материалы, например стены зданий, не являются препятствием для магнитных полей.

  1. Электрические поля возникают при наличии напряжения.
  2. Их сила измеряется в вольтах на метр (В/м)
  3. Электрическое поле существует даже при выключенном приборе.
  4. Сила поля уменьшается по мере удаления от источника.
  5. Большинство строительных материалов в какой-то мере защищают от электрических полей.
  1. Магнитные поля возникают при наличии тока.
  2. Их сила измеряется в амперах на метр (А/м). Исследователи электромагнитных полей обычно используют «родственный» показатель – единицу измерения индукции магнитного поля (микротесла – мкТл или миллитесла — мТл).
  3. Магнитное поле возникает при включении прибора и наличии тока.
  4. Сила поля уменьшается по мере удаления от источника поля.
  5. Большинство материалов не могут ослабить магнитное поле.

С любезного согласия Национального совета по радиологической защите, Соединенное Королевство.

Электрические поля
Включение провода от прибора в розетку создает электрические поля в воздухе вокруг прибора. Чем выше напряжение, тем сильнее создаваемое поле. Поскольку напряжение существует даже при отсутствии электрического тока, совсем не обязательно включать электробытовой прибор, чтобы в помещении, где он находится, образовалось электрическое поле.

Магнитные поля
Магнитные поля возникают только при наличии электрического тока. В этом случае в помещении одновременно есть и магнитное, и электрическое поле. Чем выше сила тока, тем сильнее магнитное поле.

Высокое напряжение используется для передачи и распределения электричества, в то время как относительно низкое напряжение используется в домашних условиях.

Напряжение в оборудовании для передачи электроэнергии меняется изо дня в день незначительно, а вот сила тока в линиях электропередач меняется в зависимости от потребления энергии.

Электрические поля вокруг провода бытового электроприбора пропадают лишь в том случае, если вилка прибора вытащена из розетки или на уровне стены отключено электричество. Однако эти поля по-прежнему будут существовать вокруг кабеля за стеной.

Чем статические поля отличаются от изменяющихся во времени полей?
Статическое поле не меняется со временем. Постоянный ток – это электрический ток только в одном направлении.

В любом приборе, работающем от аккумуляторной батареи, ток движется от батареи к прибору и затем обратно в батарею. Такой ток создает статическое магнитное поле. Магнитное поле Земли также является статическим.

Аналогично статическое магнитное поле возникает вокруг стержневого электромагнита, в чем можно наглядно убедиться, глядя на узоры, образующиеся при распылении железных опилок вокруг такого магнита.

Электромагнитные поля, изменяющиеся во времени, образуются при переменном токе. Переменный ток с течением времени в определенной закономерности меняет свое направление на обратное.

В большинстве европейских стран переменный ток с частотой 50 Гц 50 раз в секунду меняет свое направление. Аналогичным образом сопутствующее электромагнитное поле изменяет свое направление 50 раз в секунду.

В странах Северной Америки используется ток с частотой 60 Гц.

Основные источники полей низкой, средней и высокой частоты
Изменяющиеся во времени электромагнитные поля, создаваемые электроприборами, – это пример полей крайне низкой частоты (КНЧ). Обычно они имеют частоту до 300 Гц.

Другая техника создает поля средней частоты (СЧ) – от 300 Гц до 10 МГц и радиочастотные поля (РЧ) – от 10 МГц до 300 ГГц. Воздействие ЭМП на организм человека зависит не только от уровня поля, но и от его частоты и энергии.

Поступающее в наши дома сетевое электричество и все бытовые электроприборы являются основными источниками полей КНЧ; компьютерные мониторы, противоугонные устройства и оборудование для защиты от краж, а также системы безопасности являются основными источниками полей СЧ; радио, телевизоры, антенны радаров и сотовых телефонов, микроволновые печи – это основные источники РЧ полей. Такие поля индуцируют электрические токи внутри организма человека, которые могут вызывать ряд неблагоприятных эффектов, например, нагревание внутренних тканей организма и электрический шок. Все зависит от их амплитуды и частоты. (Однако, чтобы вызвать такие последствия, поля вне человеческого организма должны быть очень сильными, гораздо сильнее тех, что имеются в обычной окружающей среде.)

Мобильные телефоны, теле- и радиопередающие станции и радары создают РЧ поля. Эти поля используются для передачи информации на большие расстояния и являются основой для телекоммуникаций, радио- и ТВ-вещания во всем мире. Микроволновые поля – это РЧ поля высокой частоты в диапазоне ГГц. В микроволновых печах такие поля используются для быстрого подогревания пищи.

В радиочастотном диапазоне электрические и магнитные поля тесно взаимосвязаны, и мы, как правило, измеряем их уровни как плотность мощности – в ваттах на квадратный метр (Вт/м2).

  • Электромагнитный спектр охватывает как природные, так и антропогенные источники ЭМП. Частота и длина волны – это характеристики ЭМП. В электромагнитной волне эти две характеристики взаимосвязаны: чем выше частота, тем короче волна.
  • Ионизирующее излучение, такое как рентгеновские и гамма-лучи, состоит из фотонов, несущих энергию, достаточную для разрыва связей, которые удерживают молекулы между собой. Фотоны электромагнитных волн промышленной частоты и радиочастотных волн обладают гораздо меньшей энергией, не достаточной для подобного эффекта.
  • Электрические поля существуют везде, где есть электрический заряд, и измеряются в вольтах на метр (В/м). Магнитные поля возникают там, где есть электрический ток. За единицу измерения индукции магнитного поля берется микротесла — мкТл или миллитесла — мТл.
  • На радио- и микроволновых частотах электрические и магнитные поля считаются двумя компонентами электромагнитных волн. Плотность мощности, выражаемая в ваттах на квадратный метр (Вт/м2), характеризует интенсивность этих полей.
  • ЭМВ низкой и высокой частоты по-разному воздействуют на организм человека. Сетевое электричество и бытовые электроприборы являются наиболее распространенными источниками низкочастотных электрических и магнитных полей в среде обитания человека. Повседневными источниками РЧ электромагнитных полей являются средства телекоммуникации, антенны радио- и телевещания, а также микроволновые печи.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Следующая страница »

Источник: https://www.who.int/peh-emf/about/WhatisEMF/ru/

Электромагнитное поле, его влияние на человека, измерение и защита

Электромагнитное поле

  • Что такое электромагнитное поле, как оно влияет на здоровье человека и зачем его измерять — вы узнаете из этой статьи. Продолжая знакомить вас с ассортиментом нашего магазина, расскажем о полезных приборах — индикаторах напряженности электромагнитного поля (ЭМП). Они могут применяться как на предприятиях, так и в быту. 

    Что такое электромагнитное поле?

    Современный мир немыслим без бытовой техники, мобильных телефонов, электричества, трамваев и троллейбусов, телевизоров и компьютеров. Мы привыкли к ним и совершенно не задумываемся о том, что любой электрический прибор создает вокруг себя электромагнитное поле. Оно невидимо, но влияет на любые живые организмы, в том числе и на человека.Электромагнитное поле — особая форма материи, возникающая при взаимодействии движущихся частиц с электрическими зарядами. Электрическое и магнитное поле взаимосвязаны друг с другом и могут порождать одно другое — именно поэтому, как правило, о них говорят вместе как об одном, электромагнитном поле.

    К основным источникам электромагнитных полей относят:

    — линии электропередач;— трансформаторные подстанции;— электропроводку, телекоммуникации, кабели телевидения и интернета;— вышки сотовой связи, радио- и телевышки, усилители, антенны сотовых и спутниковых телефонов, Wi-Fi роутеры;— компьютеры, телевизоры, дисплеи;— бытовые электроприборы;— индукционные и микроволновые (СВЧ) печи;— электротранспорт;— радары.

Влияние электромагнитных полей на здоровье человека

Электромагнитные поля влияют на любые биологические организмы — на растения, насекомых, животных, людей.

Ученые, изучающие влияние ЭМП на человека, пришли к выводу, что длительное и регулярное воздействие электромагнитных полей может привести к:— повышенной утомляемости, нарушениям сна, головным болям, снижению давления, снижению частоты пульса;— нарушениям в иммунной, нервной, эндокринной, половой, гормональной, сердечно-сосудистой системах;— развитию онкологических заболеваний; — развитию заболеваний центральной нервной системы;

— аллергическим реакциям.

Защита от ЭМП

Существуют санитарные нормы, устанавливающие максимально допустимые уровни напряженности электромагнитного поля в зависимости от времени нахождения в опасной зоне — для жилых помещений, рабочих мест, мест возле источников сильного поля.

Если нет возможности уменьшить излучение конструкционно, например, от линии электромагнитных передач (ЭМП) или сотовой вышки, то разрабатываются служебные инструкции, средства защиты для работающего персонала, санитарно-карантинные зоны ограниченного доступа.

Различные инструкции регламентируют время пребывания человека в опасной зоне.

Экранирующие сетки, пленки, остекление, костюмы из металлизированной ткани на основе полимерных волокон способны снизить интенсивность электромагнитного излучения в тысячи раз.

По требованию ГОСТа зоны излучения ЭМП ограждаются и снабжаются предупреждающими табличками «Не входить, опасно!» и знаком опасности электромагнитного поля.

Специальные службы с помощью приборов постоянно контролируют уровень напряженности ЭМП на рабочих местах и в жилых помещениях. Можно и самостоятельно позаботиться о своем здоровье, купив портативный прибор «Импульс» или комплект «Импульс» + нитрат-тестер «SOEKS».

Зачем нужны бытовые приборы измерения напряженности электромагнитного поля?

Электромагнитное поле негативно влияет на здоровье человека, поэтому полезно знать, какие места, в которых вы бываете (дома, в офисе, на приусадебном участке, в гараже) могут представлять опасность.

Вы должны понимать, что повышенный электромагнитный фон могут создавать не только ваши электрические приборы, телефоны, телевизоры и компьютеры, но и неисправная проводка, электроприборы соседей, промышленные объекты, расположенные неподалеку.

Специалисты выяснили, что кратковременное воздействие ЭМП на человека практически безвредно, но длительное нахождение в зоне с повышенным электромагнитным фоном опасно. Вот такие зоны и можно обнаружить с помощью приборов типа «Импульс». Так, вы сможете проверить места, где проводите больше всего времени; детскую и свою спальню; рабочий кабинет.

В прибор занесены значения, установленные нормативными документами, так что вы сразу сможете оценить степень опасности для вас и ваших близких.

Возможно, что после обследования вы решите отодвинуть компьютер от кровати, избавиться от сотового телефона с усиленной антенной, поменять старую СВЧ-печь на новую, заменить изоляцию дверцы холодильника с режимом No Frost.

Источник: https://pcgroup.ru/blog/elektromagnitnoe-pole-ego-vliyanie-na-cheloveka-izmerenie-i-zaschita/

Электромагнитное поле. Электромагнитные волны — Класс!ная физика

Электромагнитное поле

Электромагнитное поле — это порождающие друг друга переменные электрические и магнитные поля.
Теория электромагнитного поля создана Джеймсом Максвеллом в 1865 г.

Он теоретически доказал, что: любое изменение со временем магнитного поля приводит к возникновению изменяющегося электрического поля, а всякое изменение со временем электрического поля порождает изменяющееся магнитное поле.

Если электрические заряды движутся с ускорением, то создаваемое ими электрическое поле периодически меняется и само создает в пространстве переменное магнитное поле и т.д.

Источниками электромагнитного поля могут быть: — движущийся магнит;

— электрический заряд, движущийся с ускорением или колеблющийся ( в отличие от заряда движущегося с постоянной скоростью, например, в случае постоянного тока в проводнике, здесь создается постоянное магнитное поле).

Электрическое поле существует всегда вокруг электрического заряда, в любой системе отсчета, магнитное – в той, относительно которой электрические заряды движутся.
Электромагнитное поле существует в системе отсчета, относительно которой электрические заряды движутся с ускорением.

ПОПРОБУЙ РЕШИ

Кусок янтаря потёрли о ткань, и он зарядился статическим электричеством. Какое поле можно обнаружить вокруг неподвижного янтаря? Вокруг движущегося?

___

Заряженное тело покоится относительно поверхности земли. Автомобиль равномерно и прямолинейно движется относительно поверхности земли. Можно ли обнаружить постоянное магнитное поле в системе отсчета, связанной с автомобилем?

Какое поле возникает вокруг электрона, если он: покоится; движется с постоянной скоростью; движется с ускорением?

___ В кинескопе создаётся поток равномерно движущихся электронов. Можно ли обнаружить магнитное поле в системе отсчёта, связанной с одним из движущихся электронов?

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

Электромагнитные волы — это электромагнитное поле, распространяющееся в пространстве с конечной скоростью, зависящей от свойств среды.

Свойства электромагнитных волн: -распространяются не только в веществе, но и в вакууме; — распространяются в вакууме со скоростью света ( С = 300 000 км/c); — это поперечные волны;

— это бегущие волны (переносят энергию).

Источником электромагнитных волн являются ускоренно движущиеся электрические заряды.
Колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.

ШКАЛА ЭЛЕКТРОМАГНИТНЫХ ВОЛН

Все окружающее нас пространство пронизано электромагнитным излучением. Солнце, окружающие нас тела, антенны передатчиков испускают электромагнитные волны, которые в зависимости от их частоты колебаний носят разные названия.

Метры

Радиоволны—это электромагнитные волны (c длиной волны от более чем 10000м до 0,005м), служащие для передачи сигналов (информации) на расстояние без проводов. В радиосвязи радиоволны создаются высокочастотными токами, текущими в антенне.

Радиоволны различной длины распространяются по-разному.

___

Электромагнитные излучения с длиной волны, меньшей чем 0,005м, но большей чем 770 нм, т. е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением (ИК).
Инфракрасное излучение испускают любые нагретые тела.

Источниками инфракрасного излучения служат печи, батареи водяного отопления, электрические лампы накаливания. С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте.

Инфракрасное излучение применяется для сушки окрашенных изделий, стен зданий, древесины.

___

К видимому свету относят излучения с длинной волны примерно от 770нм до 380нм, от красного до фиолетового света.

Значения этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.

Свет является обязательным условием для развития зеленых растений и, следовательно, необходимым условием для существования жизни Земле.

___

Невидимое глазом электромагнитное излучение с длиннной волны меньше, чем у фиолетового света, называют ультрафиолетовым излучением (УФ).. Ультрафиолетовые излучение способно убивать белезнетворных бактерий, поэтому его широко применяют а медицине.

Ультрафиолетовое излучение в составе солнечного света вызывает биологические процессы, приводящие к потемнению кожи человека – загару. В качестве источников ультрафиолетового излучения в медицине используются оразрядные лампы.

Трубки таких ламп изготовляют из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами.

___

Рентгеновские лучи (Ри) невидимы азом. Они проходят без существенного поглощения через значительные слои вещества, непрозрачного для видимого света.

Обнаруживают рентгеновские лучи по их способности вызывать определенное свечение некоторых кристаллов и действовать на фотопленку.

Способность рентгеновских лучей проникать через толстые слои веществ используется для диагностики заболеваний внутренних органов человека.

В технике рентгеновские лучи применяются для контроля внутренней структуры различных изделий, сварных швов. Рентгеновское излучение обладает сильным биологическим действием и применяется для лечения некоторых заболеваний.

___

Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными ядрами и возникающее при взаимодействии элементарных частиц.

Следующая страница «Радиоактивность»

Электромагнитное поле — Класс!ная физика

Магнитное поле — Определение направления линий магнитного поля — Обнаружение магнитного поля по его действию на проводник с током — Магнитная индукция. Магнитный поток — Явление электромагнитной индукции — Электромагнитное поле. Электромагнитные волны

Источник: http://class-fizika.ru/9_34.html

Электромагнитные поля (ЭМП/ЭМИ): определение и нормы СанПиН

Электромагнитное поле
Электричество вокруг нас

Электромагнитное поле (определение из БСЭ) — это особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами.

Исходя из этого определения не понятно, что является первичным – существование заряженных частиц или же наличие поля. Быть может только благодаря наличию электромагнитного поля частицы могут получать заряд. Также как и в истории с курицей и яйцом.

Суть в том, что заряженные частицы и электромагнитное поле неотделимы друг от друга и друг без друга существовать не могут.

Поэтому определение не даёт нам с вами возможности понять суть явления электромагнитного поля и единственное, что следует запомнить, что это особая форма материи! Теория электромагнитного поля была разработана Джеймсом Максвеллом в 1865 г.

Что такое электромагнитное поле? Можно представить себе, что мы живём в электромагнитной Вселенной, которая вся целиком и полностью пронизана электромагнитным полем, а различные частицы и вещества в зависимости от своего строения и свойств под воздействием электромагнитного поля приобретают положительный или отрицательный заряд, накапливают его, или же остаются электронейтральными. Соответственно электромагнитные поля можно разделить на два вида: статическое, то есть излучаемое заряженными телами (частицами) и неотъемлемое от них, и динамическое, распространяющееся в пространстве, будучи оторванным от источника, излучившего его. Динамическое электромагнитное поле в физике представляется в виде двух взаимноперпендикулярных волн: электрической (Е) и магнитной (Н).

Тот факт, что электрическое поле порождается переменным магнитным полем,а магнитное поле — переменным электрическим, приводит к тому, что электрические и магнитные переменные поля не существуют по-отдельности друг от друга.

Электромагнитное поле неподвижных или равномерно движущихся заряженных частиц напрямую связано с самими частицами.

При ускоренном движении этих заряженных частиц электромагнитное поле «отрывается» от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника.

Природные (естественные) источники электромагнитных полей

Природные (естественные) источники ЭМП делят на следующие группы:

  • электрическое и магнитное поле Земли;
  • радио излучение Солнца и галактик (реликтовое излучение, равномерно распространенное во Вселенной);
  • атмосферное электричество;
  • биологический электромагнитный фон.
  • Магнитное поле Земли. Величина геомагнитного поля Земли меняется по земной поверхности от 35 мкТл на экваторе до 65 мкТл вблизи полюсов.

    Электрическое поле Земли направлено нормально к земной поверхности, заряженной отрицательно относительно верхних слоев атмосферы.

    Напряжённость электрического поля у поверхности Земли составляет 120…130 В/м и убывает с высотой примерно экспоненциально.

    Годовые изменения ЭП сходны по характеру на всей Земле: максимальная напряжённость 150…250 В/м в январе-феврале и минимальная 100…120 В/м в июне-июле.

    Атмосферное электричество – это электрические явления в земной атмосфере.

    В воздухе (ссылка) всегда имеются положительные и отрицательные электрические заряды – ионы, возникающие под действием радиоактивных веществ, космических лучей и ультрафиолетового излучения Солнца.

    Земной шар заряжен отрицательно; между ним и атмосферой имеется большая разность потенциалов. Напряжённость электрастатического поля резко возрастает во время гроз. Частотный диапазон атмосферных разрядов лежит между 100 Гц и 30 МГц.

    Внеземные источники включают излучения за пределами атмосферы Земли.

    Биологический электромагнитный фон. Биологические объекты, как и другие физические тела, при температуре выше абсолютного нуля излучают ЭМП в диапазоне 10 кГц – 100 ГГц.

    Это объясняется хаотическим движением зарядов – ионов, в теле человека. Плотность мощности такого излучения у человека составляет 10 мВт/см2, что для взрослого даёт суммарную мощность в 100 Вт.

    Человеческое тело также излучает ЭМП с частотой 300 ГГц с плотностью мощности около 0,003 Вт/м2.

    Антропогенные источники электромагнитных полей

    Антропогенные источники делятся на 2 группы:

    Источники низкочастотных излучений (0 — 3 кГц)

    Эта группа включает в себя все системы производства, передачи и распределения электроэнергии (линии электропередачи, трансформаторные подстанции, электростанции, различные кабельные системы), домашнюю и офисную электро- и электронную технику, в том числе и мониторы ПК, транспорт на электроприводе, ж/д транспорт и его инфраструктуру, а также метро, троллейбусный и трамвайный транспорт.

    Уже сегодня электромагнитное поле на 18-32% территории городов формируется в результате автомобильного движения. Электромагнитные волны, возникающие при движении транспорта, создают помехи теле- и радиоприему, а также могут оказывать вредное воздействие на организм человека.

    Источники высокочастотных излучений (от 3 кГц до 300 ГГц)

    К этой группе относятся функциональные передатчики — источники электромагнитного поля в целях передачи или получения информации.

    Это коммерческие передатчики (радио, телевидение), радиотелефоны (авто-, радиотелефоны, радио СВ, любительские радиопередатчики, производственные радиотелефоны), направленная радиосвязь (спутниковая радиосвязь, наземные релейные станции), навигация (воздушное сообщение, судоходство, радиоточка), локаторы (воздушное сообщение, судоходство, транспортные локаторы, контроль за воздушным транспортом). Сюда же относится различное технологическое оборудование, использующее СВЧ-излучение, переменные (50 Гц — 1 МГц) и импульсные поля, бытовое оборудование (СВЧ-печи), средства визуального отображения информации на электронно-лучевых трубках (мониторы ПК, телевизоры и пр.). Для научных исследований в медицине применяют токи ультравысокой частоты. Возникающие при использовании таких токов электромагнитные поля представляют определенную профессиональную вредность, поэтому необходимо принимать меры защиты от их воздействия на организм.

    Основными техногенными источниками являются:

  • бытовые телеприёмники, СВЧ-печи, радиотелефоны и т.п.

    устройства;

  • электростанции, энергосиловые установки и трансформаторные подстанции;
  • широкоразветвлённые электрические и кабельные сети;
  • радиолокационные, радио- и телепередающие станции, ретрансляторы;
  • компьютеры и видеомониторы;
  • воздушные линии электропередач (ЛЭП).
  • Особенностью облучения в городских условиях является воздействие на население как суммарного электромагнитного фона (интегральный параметр), так и сильных ЭМП от отдельных источников (дифференциальный параметр).

    Источник: https://www.avdspb.ru/electromagnitnie-polya-opredelenie.html

    Электромагнитное поле. урок. Физика 11 Класс

    Электромагнитное поле

    Мы разговариваем по мобильному телефону. Как передается сигнал? Как передается сигнал от космической станции, улетевшей к Марсу? В пустоте? Да, вещества может не быть, но и это не пустота, есть нечто другое, через что передается сигнал. Это нечто назвали электромагнитным полем. Это прямо не наблюдаемый, но реально существующий объект природы.

    Если звуковой сигнал – это изменение параметров вещества, например воздуха (рис. 1), то радиосигнал – это изменения параметров ЭМ-поля.

    Рис. 1. Распространение звуковой волны в воздухе

    Слова «электрический» и «магнитный» нам понятны, мы уже изучили отдельно электрические явления (рис. 2) и магнитные явления (рис. 3), но почему тогда мы ведем речь об электромагнитном поле? Сегодня мы в этом разберемся.

    Рис. 2. Электрическое поле

    Рис. 3. Магнитное поле

    Примеры электромагнитных явлений.

    В микроволновке создаются сильные, а главное – очень быстро изменяющиеся электромагнитные поля, которые действуют на электрический заряд. А как мы знаем, в атомах и молекулах веществ содержится электрический заряд (рис.

    4). Вот на него и действует электромагнитное поле, заставляя молекулы быстрее двигаться (рис. 5) – увеличивается температура и еда нагревается. Такую же природу имеют рентгеновские лучи, ультрафиолетовые лучи, видимый свет.

    Рис. 4. Молекула воды является диполем

    Рис. 5. Движение молекул, имеющих электрический заряд

    В микроволновке электромагнитное поле сообщает веществу энергию, которая идет на нагревание, видимый свет сообщает рецепторам глаза энергию, которая идет на активацию рецептора (рис.

    6), энергия ультрафиолетовых лучей идет на образование меланина в коже (появление загара, рис. 7), а энергия рентгеновских лучей заставляет чернеть пленку, на которой вы можем увидеть изображение своего скелета (рис. 8).

    Электромагнитное поле во всех этих случаях имеет разные параметры, поэтому и оказывает разное воздействие.

    Рис. 6. Условная схема активации рецептора глаза энергией видимого света

    Рис. 7. Загар кожи

    Рис. 8. Почернение пленки при рентгене

    Так что с электромагнитным полем мы сталкиваемся намного чаще, чем кажется, и уже давно привыкли к явлениям, которые с ним связаны.

    Итак, нам известно, что электрическое поле возникает вокруг электрических зарядов (рис. 9). Здесь всё понятно.

    Рис. 9. Электрическое поле вокруг электрического заряда

    Если электрический заряд движется, то вокруг него, как мы изучали, возникает магнитное поле (рис. 10). Здесь уже возникает вопрос: движется электрический заряд, вокруг него есть электрическое поле, при чем здесь магнитное поле? Еще один вопрос: мы говорим «заряд движется».

    Но ведь движение относительно, и он может в одной системе отсчета двигаться, а в другой – покоиться (рис. 11).

    Значит, в одной системе отсчета магнитное поле будет существовать, а в другой нет? Но поле не должно существовать или не существовать в зависимости от выбора системы отсчета.

    Рис. 10. Магнитное поле вокруг движущегося электрического заряда

    Рис. 11. Относительность движения заряда

    Дело в том, что есть единое электромагнитное поле, и источник у него единый – электрический заряд. Оно имеет две составляющие. Электрическое и магнитное поля – это отдельные проявления, отдельные компоненты единого электромагнитного поля, которые проявляются по-разному в разных системах отсчета (рис. 12).

    Рис. 12. Проявления электромагнитного поля

    Можно выбрать систему отсчета, в которой будет проявляться только электрическое поле, или только магнитное поле, или оба сразу. Однако нельзя выбрать систему отсчета, в которой и электрическая, и магнитная составляющая будет нулевой, то есть в которой электромагнитное поле перестанет существовать.

    В зависимости от системы отсчета мы видим либо одну составляющую поля, либо другую, либо их вместе. Это как движение тела по окружности: если посмотреть на такое тело сверху, увидим движение по окружности (рис. 13), если со стороны – увидим колебания вдоль отрезка (рис. 14). В каждой проекции на ось координат круговое движение – это колебания.

    Рис. 13. Движение тела по окружности

    Рис. 14. Колебания тела вдоль отрезка

    Рис. 15. Проекция круговых движений на ось координат

    Другая аналогия – проецирование пирамиды на плоскость. Ее можно спроецировать в треугольник или квадрат. На плоскости это совершенно разные фигуры, но все это – пирамида, на которую смотрят с разных сторон. Но нет такого ракурса, при взгляде с которого пирамида исчезнет совсем. Она только будет выглядеть более похожей на квадрат или треугольник (рис. 16).

    Рис. 16. Проекции пирамиды на плоскость

    Рассмотрим проводник с током. В нем отрицательные заряды скомпенсированы положительными, электрическое поле вокруг него равно нулю (рис. 17). Магнитное поле не равно нулю (рис. 18), возникновение магнитного поля вокруг проводника с током мы рассматривали.

    Выберем систему отсчета, в которой электроны, образующие электрический ток, будут неподвижны. Но в этой системе отсчета относительно электронов будут двигаться положительно заряженные ионы проводника в обратную сторону: все равно возникает магнитное поле (рис.

    18).

    Рис. 17. Проводник с током, у которого электрическое поле равно нулю

    Рис. 18. Магнитное поле вокруг проводника с током

    Если бы электроны были в вакууме, в этой системе отсчета вокруг них возникало бы электрическое поле, ведь они не скомпенсированы положительными зарядами, однако магнитного поля не было бы (рис. 19).

    Рис. 19. Электрическое поле вокруг электронов, находящихся в вакууме

    Рассмотрим другой пример. Возьмем постоянный магнит. Вокруг него есть магнитное поле, но электрического нет. Действительно, ведь электрическое поле протонов и электронов компенсируется (рис. 20).

    Рис. 20. Магнитное поле вокруг постоянного магнита

    Возьмем систему отсчета, в которой магнит движется. Вокруг движущегося постоянного магнита возникнет вихревое электрическое поле (рис. 21). Как его выявить? Поместим на пути магнита металлическое кольцо (неподвижное в данной системе отсчета).

    В нем возникнет ток – это хорошо нам известное явление электромагнитной индукции: при изменении магнитного потока возникает электрическое поле, приводящее к движению зарядов, к появлению тока (рис. 22).

    В одной системе отсчета электрического поля нет, а в другой оно проявляется.

    Рис. 21. Вихревое электрическое поле вокруг движущегося постоянного магнита

    Рис. 22. Явление электромагнитной индукции

    Магнитное поле постоянного магнита

    В любом веществе электроны, которые вращаются вокруг ядра, можно представлять как маленький электрический ток, который протекает по окружности (рис. 23). Значит, вокруг него возникает магнитное поле. Если вещество не магнитится, значит, плоскости вращения электронов направлены произвольно и магнитные поля от отдельных электронов компенсируют друг друга, так как направлены хаотично.

    Рис. 23. Представление вращения электронов вокруг ядра

    В магнитных веществах как раз-таки плоскости вращения электронов ориентированы примерно одинаково (рис. 24). Поэтому магнитные поля от всех электронов складываются, и получается уже ненулевое магнитное поле в масштабе целого магнита.

    Рис. 24. Вращение электронов в магнитных веществах

    Вокруг постоянного магнита существует магнитное поле, а точнее магнитная составляющая электромагнитного поля (рис. 25).

    Можем ли мы найти такую систему отсчета, в которой магнитная составляющая обнуляется и магнит теряет свои свойства? Все-таки нет. И правда, электроны вращаются в одной плоскости (смотри рис.

    24), в любой момент времени скорости электронов не направлены в одну и ту же сторону (рис. 26). Так что невозможно найти систему отсчета, где они все замрут и магнитное поле пропадет.

    Рис. 25. Магнитное поле вокруг постоянного магнита

    Рис. 26. Направленность скоростей электронов

    Таким образом, электрическое и магнитное поля – это разные проявления единого электромагнитного поля. Нельзя сказать, что в конкретной точке пространства есть только магнитное или только электрическое поле. Там может быть и одно, и другое. Все зависит от системы отсчета, из которой мы рассматриваем эту точку.

    Почему же мы до этого говорили отдельно об электрическом и о магнитном полях? Во-первых, так сложилось исторически: люди давно знают о магните, люди давно наблюдали наэлектризованный о янтарь мех, и никто не догадывался, что эти явления имеют одну природу. А во-вторых, это удобная модель.

    В задачах, где нас не интересует взаимосвязь электрической и магнитной составляющих, их удобно рассматривать отдельно.

    Два покоящихся заряда в данной системе отсчета взаимодействуют через электрическое поле – мы применяем к ним закон Кулона, нас не интересует, что эти же электроны могут в какой-то системе отсчета двигаться и создавать магнитное поле, и мы успешно решаем задачу (рис. 27).     

    Рис. 27. Закон Кулона

    Действие магнитного поля на движущийся заряд рассматривается в другой модели, и она тоже в рамках своей применимости отлично работает при решении ряда задач (рис. 28).

    Рис. 28. Правило левой руки

    Постараемся понять, как взаимосвязаны составляющие электромагнитного поля.

    Стоит отметить, что точная связь достаточно сложна. Ее вывел британский физик Джеймс Максвелл. Он вывел знаменитые 4 уравнения Максвелла (рис. 29), которые изучаются в вузах и требуют знания высшей математики. Мы их изучать, конечно, не будем, но в нескольких простых словах разберемся, что они означают.

    Рис. 29. Уравнения Максвелла

    Опирался Максвелл на работы другого физика – Фарадея (рис. 30), который просто качественно описал все явления. Он делал рисунки (рис. 31), записи, которые очень помогли Максвеллу.

    Рис. 30. Майкл Фарадей

    Рис. 31. Рисунки Майкла Фарадея из книги «Электричество» (1852)

    Фарадей открыл явление электромагнитной индукции (рис. 32). Вспомним, в чем оно заключается. Переменное магнитное поле порождает ЭДС индукции в проводнике. Иными словами, переменное магнитное поле (да, в данном случае – не электрический заряд) порождает электрическое поле. Это электрическое поле является вихревым, то есть линии его замкнуты (рис. 33).

    Рис. 32. Рисунки Майкла Фарадея к опыту

    Рис. 33. Возникновение ЭДС индукции в проводнике

    Кроме того, мы знаем, что магнитное поле порождается движущимся электрическим зарядом. Правильнее будет сказать, что оно порождается переменным электрическим полем. При движении заряда электрическое поле в каждой точке изменяется, и это изменение порождает магнитное поле (рис. 34).

    Рис. 34. Возникновение магнитного поля

    Можно заметить появление магнитного поля между обкладок конденсатора. Когда он заряжается или разряжается, между пластин возникает переменное электрическое поле, что в свою очередь порождает магнитное поле. В данном случае линии магнитного поля будут лежать в плоскости, перпендикулярной линиям электрического поля (рис. 35).

    Рис. 35. Появление магнитного поля между обкладок конденсатора

    А теперь посмотрим на уравнения Максвелла (рис. 29), ниже дана для ознакомления небольшая их расшифровка.

    Значок  – дивергенция – это математический оператор, он выделяет ту составляющую поля, которая имеет источник, то есть линии поля на чем-то начинаются и заканчиваются.

    Посмотрите на второе уравнение: эта составляющая магнитного поля  равна нулю : линии магнитного поля ни на чем не начинаются и не заканчиваются, магнитного заряда не существует.

    Посмотрите на первое уравнение: такая составляющая электрического поля  пропорциональна плотности заряда . Электрическое поле  создается электрическим зарядом .

    Наиболее интересны следующих два уравнения. Значок  – ротор – это математический оператор, выделяющий вихревую составляющую поля.

    Третье уравнение означает, что вихревое электрическое поле  создается изменяющимся во времени  магнитным полем  ( – это производная, которая, как вы знаете из математики, означает скорость изменения магнитного поля). То есть речь идет об электромагнитной индукции.

    Четвертое уравнение показывает, если не обращать внимания на коэффициенты пропорциональности: вихревое магнитное поле  создается изменяющимся  электрическом полем , а также электрическим током  ( – плотность тока). Речь идет о том, что мы хорошо знаем: магнитное поле  создается движущимся электрическим зарядом  и .

    Как видите, переменное магнитное поле может порождать переменное электрическое, а переменное электрическое поле в свою очередь порождает переменное магнитное и так далее (рис. 36).

    Рис. 36. Переменное магнитное поле может порождать переменное электрическое, и наоборот

    В результате в пространстве может образовываться электромагнитная волна (рис. 37). Эти волны имеют разные проявления – это и радиоволны, и видимый свет, ультрафиолет и так далее. Об этом поговорим на следующих уроках.

    Рис. 37. Электромагнитная волна

    Список литературы

    1. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учрежде­ний. – М.: Дрофа, 2005.
    2. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. – М.: Просвещение, 2010.

    Дополнительные рекомендованные ссылки на ресурсы сети Интернет

    1. Интернет портал «studopedia.su» (Источник)
    2. Интернет портал «worldofschool.ru» (Источник)

    Домашнее задание

    1. Можно ли обнаружить магнитное поле в системе отсчета, связанной с одним из равномерно движущихся электронов в потоке, который создается в кинескопе телевизора?
    2. Какое поле возникает вокруг электрона, движущегося в данной системе отсчета с постоянной скоростью?
    3. Какое поле можно обнаружить вокруг неподвижного янтаря, заряженного статическим электричеством? Вокруг движущегося? Ответы обоснуйте.

    Источник: https://interneturok.ru/lesson/physics/11-klass/belektromagnitnaya-indukciyab/elektromagnitnoe-pole-2

    Booksm
    Добавить комментарий