Электромагнетизм

Содержание
  1. Магнетизм для чайников: основные формулы, определение, примеры
  2. Магнетизм: определение
  3. Магнитная индукция
  4. Сила Ампера
  5. Сила Лоренца
  6. Взаимодействие токов
  7. Магнитный поток и ЭДС
  8. Энергия магнитного поля
  9. Электромагнетизм
  10. Открытие электромагнетизма
  11. Магнитное поле прямого проводника с током
  12. Магнитное поле катушки с током 
  13. Применение электромагнитов
  14. Параллельные проводники в магнитном поле
  15. Действие магнитного поля на проводник с током
  16. Действие магнитного поля на рамку с током
  17. Электромагнетизм: определение, история открытия и применение
  18. Определение и история открытия
  19. Электромагнитные волны
  20. Применение электромагнетизма
  21. Магнетизм (электромагнетизм): что это такое в теории элементарной физики
  22. Роль электромагнетизма в электротехнике
  23. Какой видится природа магнетизма?
  24. Магнитное выравнивание молекулы куска железа
  25. Что такое магнитный поток?
  26. Силовые линии определяющие эффект магнетизма
  27. Магнитное поле одноименных и разноименных полюсов
  28. Определение величины магнетизма
  29. Пример определения силы магнетизма
  30. Закон Кулона
  31. Закон Ампера
  32. Закон Био – Савара – Лапласа
  33. Закон Ома
  34. Закон индукции Фарадея
  35. Уравнения Максвелла

Магнетизм для чайников: основные формулы, определение, примеры

Электромагнетизм

Часто бывает, что задачу не удается решить из-за того, что под рукой нет нужной формулы. Выводить формулу с  самого начала – дело не самое быстрое, а у нас на счету каждая минута.

Ниже мы собрали вместе основные формулы по теме «Электричество и Магнетизм». Теперь, решая задачи, вы сможете пользоваться этим материалом как справочником, чтобы не терять время на поиски нужной информации.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Магнетизм: определение

Магнетизм – это взаимодействие движущихся электрических зарядов, происходящее посредством магнитного поля.

Поле – особая форма материи. В рамках стандартной модели существует электрическое, магнитное, электромагнитные поля, поле ядерных сил, гравитационное поле и поле Хиггса. Возможно, есть и другие гипотетические поля, о которых мы пока что можем только догадываться или не догадываться вовсе. Сегодня нас интересует магнитное поле.

Магнитная индукция

Так же, как заряженные тела создают вокруг себя электрическое поле, движущиеся заряженные тела порождают магнитное поле.

Магнитное поле не только создается движущимися зарядами (электрическим током), но еще и действует на них. По сути магнитное поле можно обнаружить только по действию на движущиеся заряды.

А действует оно на них с силой, называемой силой Ампера, о которой речь пойдет позже.

Изображение магнитного поля при помощи силовых линий

Прежде чем мы начнем приводить конкретные формулы, нужно рассказать про магнитную индукцию.

Магнитная индукция – это силовая векторная характеристика магнитного поля.

Она обозначается буквой B и измеряется в Тесла (Тл). По аналогии с напряженностью для электрического поля Е магнитная индукция показывает, с какой силой магнитное поле действует на заряд.

Кстати, вы найдете много интересных фактов на эту тему в нашей статье про теорию магнитного поля и интересные факты о магнитном поле Земли.

Как определять направление вектора магнитной индукции? Здесь нас интересует практическая сторона вопроса. Самый частый случай в задачах – это магнитное поле, создаваемое проводником с током, который может быть либо прямым, либо в форме окружности или витка.

Для определения направления вектора магнитной индукции существует правило правой руки. Приготовьтесь задействовать абстрактное и пространственное мышление!

Если взять проводник в правую руку так, что большой палец будет указывать на направление тока, то загнутые вокруг проводника пальцы покажут направление силовых линий магнитного поля вокруг проводника. Вектор магнитной индукции в каждой точке будет направлен по касательной к силовым линиям.

Сила Ампера

Представим, что есть магнитное поле с индукцией B. Если мы поместим в него проводник длиной l, по которому течет ток силой I, то поле будет действовать на проводник с силой:

Это и есть сила Ампера. Угол альфа – угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Направление силы Ампера определяется по правилу левой руки: если расположить левую руку так, чтобы в ладонь входили линии магнитной индукции, а вытянутые пальцы указывали бы направление тока, отставленный большой палец укажет направление силы Ампера.

Сила Лоренца

Мы выяснили, что поле действует на проводник с током. Но если это так, то изначально оно действует отдельно на каждый движущийся заряд. Сила, с которой магнитное поле действует на движущийся в нем электрический заряд, называется силой Лоренца. Здесь важно отметить слово «движущийся», так на неподвижные заряды магнитное поле не действует.

Итак, частица с зарядом q движется в магнитном поле с индукцией В со скоростью v, а альфа – это угол между вектором скорости частицы и вектором магнитной индукции. Тогда сила, которая действует на частицу:

Как определить направление силы Лоренца? По правилу левой руки. Если вектор индукции входит в ладонь, а пальцы указывают на направление скорости, то отогнутый большой палец покажет направление силы Лоренца. Отметим, что так направление определяется для положительно заряженных частиц. Для отрицательных зарядов полученное направление нужно поменять на противоположное.

Если частица массы m влетает в поле перпендикулярно линиям индукции, то она будет двигаться по окружности, а сила Лоренца будет играть роль центростремительной силы. Радиус окружности и период обращения частицы в однородном магнитном поле можно найти по формулам:

Взаимодействие токов

Рассмотрим два случая. Первый – ток течет по прямому проводу. Второй – по круговому витку. Как мы знаем, ток создает магнитное поле.

В первом случае магнитная индукция провода с током I на расстоянии R от него считается по формуле:

Мю – магнитная проницаемость вещества, мю с индексом ноль – магнитная постоянная.

Во втором случае магнитная индукция в центре кругового витка с током равна:

Также при решении задач может пригодиться формула для магнитного поля внутри соленоида. Соленоид – это катушка, то есть множество круговых витков с током.

Пусть их количество – N, а длина самого соленоилда – l. Тогда поле внутри соленоида вычисляется по формуле:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Магнитный поток и ЭДС

Если магнитная индукция – векторная характеристика магнитного поля, то магнитный поток – скалярная величина, которая также является одной из самых важных характеристик поля.

Представим, что у нас есть какая-то рамка или контур, имеющий определенную площадь. Магнитный поток показывает, какое количество силовых линий проходит через единицу площади, то есть характеризует интенсивность поля.

Измеряется в Веберах (Вб) и обозначается Ф.

S – площадь контура, альфа – угол между нормалью (перпендикуляром) к плоскости контура и вектором В.

При изменении магнитного потока через контур в контуре индуцируется ЭДС, равная скорости изменения магнитного потока через контур. Кстати, подробнее о том, что такое электродвижущая сила, вы можете почитать в еще одной нашей статье.

По сути формула выше – это формула для закона электромагнитной индукции Фарадея. Напоминаем, что скорость изменения какой-либо величины есть не что иное, как ее производная по времени.

Для магнитного потока и ЭДС индукции также справедливо обратное. Изменение тока в контуре приводит к изменению магнитного поля и, соответственно, к изменению магнитного потока.

При этом возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре.

Магнитный поток, который пронизывает контур с током, называется собственным магнитным потоком, пропорционален силе тока в контуре и вычисляется по формуле:

L – коэффициент пропорциональности, называемый индуктивностью, который измеряется в Генри (Гн). На индуктивность влияют форма контура и свойства среды. Для катушки с длиной l и с числом витков N индуктивность рассчитывается по формуле:

Формула для ЭДС самоиндукции:

Энергия магнитного поля

Электроэнергия, ядерная энергия, кинетическая энергия. Магнитная энергия – одна из форм энергии. В физических задачах чаще всего нужно рассчитывать энергию магнитного поля катушки. Магнитная энергия катушки с током I и индуктивностью L равна:

Объемная плотность энергии поля:

Конечно, это не все основные формулы раздела физики «электричество и магнетизм», однако они часто могут помочь при решении стандартных задач и расчетах. Если же вам попалась задача со звездочкой, и вы никак не можете подобрать к ней ключ, упростите себе жизнь и обратитесь за решением в сервис студенческой помощи.

Источник: https://Zaochnik-com.ru/blog/magnetizm-dlya-chajnikov-osnovnye-formuly-kotorye-prigodyatsya-pri-reshenii-zadach/

Электромагнетизм

Электромагнетизм
Подробности Категория: Электричество и магнетизм 14.05.2015 17:30 9212

Явления, возникающие в результате взаимодействия электричества и магнетизма, называют электромагнетизмом.

Открытие электромагнетизма

Ханс Кристиан Эрстед

Первооткрывателем электромагнетизма считается датский физик Ханс Кристиан Э́рстед, обнаруживший воздействие электрического тока на магнит.

До начала XIX века никто не предполагал, что электричество и магнетизм что-то связывает. И даже разделы физики, в которых они рассматривались, были разными. Доказательство существования такой связи было получено Эрстедом в 1820 г.

во время проведения опыта на лекции в университете. На экспериментальном столе рядом с проводником тока находился магнитный компас. В момент замыкания электрической цепи магнитная стрелка компаса отклонилась от своего первоначального положения.

Повторив опыт, Эрстед получил такой же результат.

Опыт Эрстеда

В последующих опытах учёный натягивал металлическую проволоку между двумя стойками. Магнитная стрелка располагалась под ней. До того как по проволоке пропускался ток, стрелка была ориентирована с севера на юг.

После замыкания электрической цепи она устанавливалась перпендикулярно проволоке. Эксперименты проводились в разных условиях. Магнитная стрелка помещалась под колпак, из которого выкачивался воздух.

Но независимо от среды, она упорно отклонялась от своего первоначального положения, как только по проводнику шёл ток. Это означало, что на магнитную стрелку, расположенную вблизи проводника с током, действовали силы, стремящиеся повернуть её. Эрстед нашёл объяснение этому.

Он предположил, что электрический ток, протекающий по проводнику, создаёт магнитное поле. Так экспериментально была открыта связь между электрическими и магнитными явлениями.

Магнитное поле прямого проводника с током

Силовые линии проводника с током

Как и магнитное поле, образованное постоянным магнитом, магнитное поле проводника с током характеризуется силовыми линиями.

Если прямой проводник, по которому идёт ток, пропустить через отверстие в листе картона, на котором рассыпаны мелкие железные или стальные опилки, то они образуют концентрические окружности, центр которых располагается на оси проводника. Эти окружности представляют собой силовые линии магнитного поля проводника с током.

Но если придать проводнику другую форму, картина будет иная.

Магнитное поле катушки с током 

Магнитное поле соленоида 

Изогнув спиралью проводник с током, мы получим соленоид (от греческого «трубка»). Силовые линии создаваемого им магнитного поля представляют собой замкнутые линии. Наиболее часто они расположены внутри витков.

Если намотать изолированную проволоку на каркас таким образом, чтобы витки располагались вплотную друг к другу, то получится катушка. При пропускании через неё тока создаётся магнитное поле, и катушка начинает притягивать металлические предметы.

Это притяжение значительно усиливается, если вставить в катушку стальной или железный стержень, который называют сердечником.  Ток создаёт магнитное поле, которое намагничивает сердечник. Затем магнитное поле сердечника складывается с магнитным полем самого соленоида, тем самым увеличивая его.

Катушку с сердечником называют электромагнитом.

Простейший электромагнит

Магнитное поле электромагнита можно регулировать, увеличивая или уменьшая силу тока или количество витков в обмотке. Каждый виток создаёт своё магнитное поле. И чем больше витков в электромагните, тем сильнее его поле. Соответственно, если уменьшить количество витков, то магнитное поле ослабляется.

Первый электромагнит создал английский инженер Уильям Стёрджен в 1825 г. Его устройство представляло собой стержень изогнутой формы, сделанный из мягкого железа и покрытый лаком для изоляции от провода. На стержень был намотан толстый провод из меди. 

Рисунок электромагнита Стёрджена

В современных электромагнитах сердечники изготавливают из ферромагнетиков – веществ, которые обладают высокой намагниченностью при температуре ниже точки Кюри даже в отсутствии внешнего магнитного поля. Для обмотки применяют изолированный алюминиевый или медный провод.

Применение электромагнитов

Электромагнитный кран

Обычно электромагнит – это катушка из проволоки, намотанной на ферромагнитный сердечник. Сердечник может иметь самую разную форму. Он является частью магнитопровода, через который проходит магнитный поток, возбуждаемый электрическим током. Другая, подвижная, часть магнитопровода – якорь, который передаёт усилие.

Применяются электромагниты в различных электротехнических устройствах, телефонах, автомобилях, телевизорах, электрических звонках и др.

С помощью электромагнита можно притягивать, удерживать и перемещать тяжёлые металлические детали и предметы, сортировать магнитные и немагнитные вещества На металлургических заводах используют электромагнитные подъёмные краны, станки с магнитными столами, на которых изделие закрепляют электромагнитами. В медицине с их помощью извлекают попавшие в глаз металлические опилки.

Параллельные проводники в магнитном поле

Проводники с током в магнитном поле

Продолжив исследования Эрстеда, Ампер подтвердил магнитное действие электрического тока, обнаружив, что проводники с током взаимодействуют друг с другом.

Причём, если токи в параллельных проводниках текут в одном направлении, то проводники притягиваются. Если же направление токов в таких проводниках противоположно, то они отталкиваются.

Более того, Ампер вывел закон, названный впоследствии его именем (закон Ампера), и позволяющий определять величину силы, с которой взаимодействуют проводники с током.

Нужно заметить, что Ампер исследовал проводник в магнитном поле, созданном не постоянным магнитом, а другим проводником с током.

Два параллельных проводника с током взаимодействуют с силой, пропорциональной величинам токов в элементарных отрезках и обратно пропорциональной расстоянию между ними.

Объединив электричество и магнетизм, Ампер назвал новую область физики электродинамикой.

Действие магнитного поля на проводник с током

Проводник с током в магнитном поле

Опыт Эрстеда демонстрирует действие электрического тока на магнит. Но может ли магнит оказывать действие на проводник с током? Оказывается, да.

Подвесим проводник между полюсами постоянного магнита. Как только по нему пойдёт ток, проводник будет втягиваться внутрь магнита или же выталкиваться за его пределы в зависимости от направления тока и расположения полюсов магнита.

Сила, действующая на проводник, называется силой Ампера.

Её величина зависит от величины тока I, длины участка проводника в магнитном поле l, величины магнитной индукции поля B и величины угла α между направлением тока и вектором магнитной индукции:

F =l·B·sinα

Как видим, наибольшее значение силы будет в том случае, если проводник расположен таким образом, что направление тока в нём перпендикулярно направлению вектора магнитной индукции. В этом случае sinα= 1.

Если же направления тока и вектора магнитной индукции совпадают, то сила Ампера равна нулю, и магнитное поле на проводник с током в этом случае не действует.

Направление силы Ампера определяется с помощью правила левой руки: Если проводник с током расположить таким образом, чтобы силовые линии магнитного поля входили в ладонь левой руки, а направление тока совпадало с направлением 4 пальцев, то отогнутый большой палец покажет направление силы Ампера.

Действие магнитного поля на рамку с током

Рамка с током в магнитном поле 

Электрический ток всегда замкнут, поэтому прямолинейный проводник можно рассматривать как часть электрической цепи.

Как же ведёт себя в магнитном поле замкнутый контур?

Если вместо гибкого проводника между полюсами магнита поместить проволоку, изогнутую в виде жёсткой рамки, то в начальный момент такая рамка установится параллельно линии, соединяющей полюса магнита.

В этот момент вектор магнитной индукции параллелен двум сторонам рамки и расположен в её плоскости.

После включения тока рамка начнёт поворачиваться и установится таким образом, что линии магнитного поля будут пронизывать её плоскость.

Вращение рамки объясняется действием на неё сил Ампера.

Каждую из сторон рамки по отдельности можно рассматривать как проводник с током. Согласно закону Ампера на них действует сила Ампера. Её направление определяется с помощью правила левой руки.

Очевидно, что силы, действующие на противоположные стороны прямоугольной рамки, будут равны по величине и противоположны по направлению из-за разного направления токов в них.

На стороны рамки, расположенные параллельно линиям магнитной индукции, силы не действуют, так как угол α между вектором магнитной индукции и направлением тока равен 0, следовательно, sinα также равен нулю.

Угол между вектором индукции и направлением тока в вертикальных сторонах рамки равен 90о. Следовательно, sinα = 1, а модуль силы, действующей на каждую из них, равен

F = I·B·a, где а – длина стороны рамки.

Силы создают вращающий момент, скалярная величина которого равна

M = I·S·B

Под действием этого момента рамка начинает поворачиваться.

В любой промежуточный момент M = I·S·B·sinβ,гдеβ – угол между вектором магнитной индукции и нормалью (перпендикуляром) к плоскости рамки.

При повороте этот угол меняется, уменьшается величина   силы, и постепенно рамка занимает положение перпендикулярно вектору магнитной индукции. В этом случае вращающий момент становится равным нулю. (М = 0).

На принципе поворота рамки с током в магнитном поле основана работа простейшего электродвигателя.

Если отключить ток в тот момент, когда рамка ещё не достигла устойчивого положения, она повернётся по инерции и остановится. При включении тока она снова начнёт вращаться.

Включая и выключая ток в нужный момент, можно добиться непрерывного вращения рамки. На этом принципе основана работа простейшего электродвигателя постоянного тока.

Чтобы рамка вращалась непрерывно, необходимо, чтобы ток поступал каждые пол-оборота. В двигателе эту функцию выполняет устройство, которое называют коллектором. Он состоит из двух металлических полуколец.

К ним припаяны концы рамки. Когда подключается ток, рамка совершает пол-оборота. Вместе с ней поворачиваются и полукольца коллектора.

В результате контакты рамки переключаются, ток в ней меняет своё направление, и рамка продолжает вращаться безостановочно.

Двигатели постоянного тока используются в тяговых электроприводах электровозов, трамваев, тепловозов, теплоходов. Электрический стартер автомобиля – это тоже двигатель постоянного тока. Микродвигатели приводят в действие детские игрушки, электроинструменты, компьютерные устройства, швейные машинки, пылесосы, бормашины и др.

Источник: http://ency.info/materiya-i-dvigenie/elektrichestvo-i-magnetizm/442

Электромагнетизм: определение, история открытия и применение

Электромагнетизм

В данной статье вы узнаете что такое электромагнетизм, электромагнитное поле и электромагнитные волны.

Определение и история открытия

Электромагнетизм — это раздел физики, который занимается электричеством, магнетизмом и взаимодействием между ними. Впервые он был открыт в 19 веке и широко применяется в современном мире физики.

Электромагнетизм — это в основном наука об электромагнитных полях. Электромагнитное поле — это поле, создаваемое электрически заряженными объектами.

 Радиоволны, инфракрасные волны, ультрафиолетовые волны и рентгеновские лучи — это электромагнитные поля в определенном диапазоне частот. Электричество производится путем изменения магнитного поля.

 Это явление также называют «электромагнитной индукцией». Точно так же магнитное поле создается движением электрических зарядов.

Основной закон электромагнетизма известен как «закон индукции Фарадея». Феномен электромагнетизма был открыт в 19 веке, и это привело к открытию «специальной теории относительности» Альберта Эйнштейна. Согласно его теории, электрические и магнитные поля могли быть преобразованы друг в друга с относительным движением.

 Это явление и его применение были открыты благодаря многочисленным вкладам великих ученых и физиков, таких как Майкл Фарадей, Джеймс Клерк Максвелл, Оливер Хевисайд и Генрих Герц.

 В 1802 году итальянский ученый продемонстрировал связь между электричеством и магнетизмом, отклонив магнитную стрелку с помощью электростатических зарядов.

Электромагнетизм — это в основном гипотеза комбинированного выражения основной силы, известной как «электромагнитная сила». Эту силу можно увидеть, когда электрический заряд движется. Это движение производит магнетизм.

 Эта идея была представлена ​​Джеймсом Клерком Максвеллом, который опубликовал теорию электричества и магнетизма в 1865 году. На основе этой теории многие ученые совершили множество открытий и других эффектов.

 Электромагнетизм распространился и на область квантовой физики, где свет распространяется как волна и взаимодействует как частица.

Было доказано, что электричество может вызвать магнетизм и наоборот. Очень простой пример — это электрический трансформатор.

 Обмены происходят внутри трансформатора, который вызывает электромагнитные волны .

 Еще один факт, касающийся этих волн, заключается в том, что им не нужна среда для распространения, хотя их скорость относительно медленнее при путешествии через прозрачные вещества.

Электромагнитные волны

Электромагнитные волны были впервые обнаружены Джеймсом Клерком Максвеллом, и они были подтверждены впоследствии Генрихом Герцем.

 Впоследствии Максвелл получил волновую форму электрических и магнитных уравнений, которая показала, что электрические и магнитные поля имеют волнообразную природу.

 Факторами, которые отличают электромагнитные волны друг от друга, являются частота, амплитуда и поляризация. Например, лазерный луч когерентен, а излучение имеет только одну частоту.

 Существуют и другие типы волн, различающихся по частоте, такие как радиоволны, которые находятся на очень низких частотах, гамма-лучи и рентгеновские лучи очень высокой частоты. Электромагнитные волны могут распространяться на очень большие расстояния, и на них не влияют никакие препятствия, будь то огромные стены или башни.

Это особое взаимодействие электричества и магнетизма привело к большим достижениям в современной науке и технике, и предпринимаются усилия, чтобы узнать больше об электромагнетизме и его применениях. Другими силами являются гравитационные силы, сильные и слабые силы. Электромагнетизм также сочетается со слабой силой, известной как «электрослабая сила».

Применение электромагнетизма

Электромагнетизм имеет множество применений в современном мире науки и физики. Самым основным применением электромагнетизма является использование двигателей.

 Двигатель имеет переключатель, который непрерывно переключает полярность снаружи двигателя. Электромагнит делает то же самое. Мы можем изменить направление, просто изменив направление тока.

 Внутри двигателя есть электромагнит, но ток регулируется таким образом, что внешний магнит отталкивает его.

Еще одно очень полезное применение электромагнетизма — «машина сканирования CAT». Эта машина обычно используется в больницах для диагностики заболеваний.

 Поскольку мы знаем, что в нашем теле присутствует ток, и чем он сильнее, тем сильнее магнитное поле.

 Эта технология сканирования способна улавливать магнитные поля, и ее легко можно идентифицировать, если внутри тела присутствует большое количество электрической активности.

Работа человеческого мозга основана на электромагнетизме. Электрические импульсы вызывают операции внутри мозга, и у него есть некоторое магнитное поле. Когда два магнитных поля пересекаются друг с другом внутри мозга, возникает помеха, которая вредна для мозга.

Источник: https://meanders.ru/chto-takoe-jelektromagnetizm.shtml

Магнетизм (электромагнетизм): что это такое в теории элементарной физики

Электромагнетизм

страница » Магнетизм (электромагнетизм): что это такое в теории элементарной физики

Силу, образующуюся в результате течения электрического тока через проводник (например, через участок провода или кабеля), характеризуют как электромагнетизм. При таких условиях проводник окружает магнитное поле. Направление магнитного поля относительно «северного» / «южного» полюсов определяется направлением тока, текущего через проводник.

Роль электромагнетизма в электротехнике

Магнетизм играет важную роль в электротехнике (электронике). Многие электронные и электрические компоненты:

  • реле,
  • соленоиды,
  • катушки индуктивности,
  • дроссели,
  • катушки громкоговорителей,
  • обмотки электродвигателей,
  • генераторы,
  • трансформаторы,
  • счетчики электроэнергии и прочие,

попросту  не способны работать в условиях отсутствия эффекта магнетизма. По сути, любая катушка, выполненная намоткой провода, даёт эффект электромагнетизма в момент течения электрического тока. Для лучшего понимания магнетизма и электромагнетизма в частности, логично рассмотреть физику работы магнитов и магнетизма.

Какой видится природа магнетизма?

Магнетизм нередко присутствуют в естественном состоянии, например, в виде продуктов добываемой минеральной руды. Причём двумя основными типами элементов природного магнетизма выступают:

  1. Оксид железа (FE3O4).
  2. Магнетитовый железняк (FeO·Fe2O3).

Если указанную пару естественных магнитов подвесить на нить, оба займут положение, соответствующее магнитному полю Земли, которое всегда указывает на север.

Полюса Земли лежат в основе эффекта электромагнетизма — явления, с которым приходится сталкиваться не только инженерам-физикам в исследованиях, но также обычным людям в хозяйственной практике

Достаточно наглядно демонстрирует эффект магнетизма стрелка туристического компаса. Относительно практических применений магнетизм природного происхождения редко принимается во внимание.

Обусловлено это низким уровнем эффекта магнетизма, характерным для таких объектов, плюс следует брать в расчёт создание искусственных магнитов. Люди научились делать искусственные магниты разных форм, размеров, силы.

Эффект магнетизма поддерживается объектами двух форм, представляющих:

  1. Постоянные магниты.
  2. Временные магниты.

Причём используемый тип магнита зависит от конкретного применения. Применяется масса различных типов материалов под изготовление магнитов:

  • железо,
  • никель,
  • никелевые сплавы,
  • хром,
  • кобальт,

Что интересно, будучи в естественном состоянии материала, некоторые элементы списка, например, никель и кобальт, демонстрируют крайне низкие величины магнетизма.

Однако если эти элементы «легируются» с другими материалами — пероксидом железа или алюминия, формируются очень сильные магниты, получившие необычные названия:

  • «Alnico»
  • «Alcomax»,
  • «Alni»,
  • «Hycomax».

Материал в немагнитном состоянии имеет молекулярную структуру в виде разрозненных цепочек (отдельных микро-магнитов), свободно расположенных в случайном порядке.

Общий эффект такого расположения приводит к нулевому или очень слабому эффекту магнетизма. Объясняется подобное явление случайным расположением отдельного молекулярного магнита, имеющего тенденцию нейтрализовать соседние молекулы.

Формирование поля в структуре материала: 1 – хаотичным случайным образом расположенные магнитные домены не дают эффекта магнетизма; 2 – упорядоченные ровно выстроенные домены дают выраженный эффект магнетизма

Когда материал намагничен, случайное расположение молекул изменяется. В итоге микроскопические случайные молекулярные магниты «выстраиваются» последовательным расположением. Этот эффект молекулярного выравнивания ферромагнитных материалов известен как теория Вебера.

Магнитное выравнивание молекулы куска железа

Теория Вебера основана на магнитных свойствах атомов благодаря действию вращения атомов электронов. Группы атомов объединяются, а магнитные поля вращаются в одном направлении. Материалы составляют микроскопические магниты на молекулярном уровне.

Структура большинства намагниченных материалов состоит из микроскопических элементов, выстроенных в одном направлении для создания только северного полюса и в другом направлении для создания южного полюса.

Материал, в структуре которого молекулярные магниты сосредоточены по всем направлениям, имеет «нейтральные» молекулярные частицы, нейтрализующие любой эффект магнетизма. Эти области молекулярных магнитов именуются «доменами».

Любому материалу характерно создание орбитальных и вращающихся электронов магнитного поля, полностью зависящего от степени выравнивания доменов в материале. Эта степень выравнивания, как правило, определяется величиной намагниченности (М).

Схематичная демонстрация формирования силовых линий: 1 – индуцируемый ток в рабочем материале; 2 – течение тока внутри проводников катушки; 3 – магнитное поле

Внутренняя структура немагнитного материала показывает М = 0.

Однако некоторые из доменов могут оставаться выровненными по границам небольших областей в материале.

Эффект приложения намагничивающей силы к материалу заключается в выравнивании некоторых доменов для получения ненулевого значения намагничивания.

Как только сила намагничивания нейтрализована, магнетизм внутри материала остаётся на некотором уровне, либо быстро затухнет в зависимости от используемого материала. Эта способность материала сохранять свойство магнетизма называется «Остаточная намагниченность».

Материалы, обладающие свойствами сохранения магнетизма, демонстрируют достаточно высокую способность к остаточной намагниченности, а потому часто используются для изготовления постоянных магнитов.

В то же время материалы, обладающие свойством быстрой потери магнетизма, демонстрируют низкую способность остаточной намагниченности.

Из таких материалов, изготавливают, к примеру, сердечники для реле и соленоидов.

Что такое магнитный поток?

Любым магнитам, независимо от формы, присуще характерное свойство — наличие пары полюсов. Внутренний магнетизм и молекулярные цепи полюсов образуют своеобразную цепочку невидимых линий потока организованной и сбалансированной структуры.

Эти линии потока образуют магнитное поле. Форма такого поля в некоторых частях более интенсивная, чем в других. Причём область магнита (традиционно концевая), обладающая наибольшим уровнем магнетизма, являются активной областью полюса.

Примерно такой вид формирования полей можно наблюдать (с помощью специальной техники) в области двух сближаемых противоположными полюсами магнитов

Линии потока — векторные поля, не видны невооруженным глазом, но доступны к определению, например, с помощью компаса. Полюса всегда присутствуют парами. Всегда существует область «северного» полюса и область «южного» полюса.

Поля отображаются визуально силовыми линиями, определяющими полюс на каждом конце материала, где линии потока более плотные и концентрированные. Линии, образующие поле, показывающие направление и степень интенсивности, называются силовыми линиями (магнитным потоком). Традиционно такой поток обозначается греческим символом «Фи» (φ).

Силовые линии определяющие эффект магнетизма

Как показано выше, магнитное поле является наиболее сильным вблизи полюсов магнита, где линии потока расположены близко друг к другу. Общее направление потока – традиционно от северного полюса (N) к южному (S) полюсу. Кроме того, силовые линии образуют замкнутые петли, выходящие на северный и на южный полюс.

Однако магнитный поток не течёт с «севера» на «юг» полюсов или каким-либо другим образом, поскольку является статической областью, окружающей магнит, где отмечается действие магнитной силы.

Другими словами, поток не течёт и не движется в принципе, а попросту существует, будучи не подверженным влиянию гравитации. Следующие важные факты магнетизма сопровождают построение силовых линий:

  • силовые линии не пересекаются и не прерываются,
  • силовые линии всегда образуют отдельные замкнутые петли,
  • силовым линиям магнетизма характерно направление с «севера» на «юг»,
  • близкое расположение силовых линий указывает на сильный магнетизм,
  • удалённое расположение силовых линий указывает на слабый магнетизм.

Силы магнетизма притягивают и отталкивают подобно электрическим силам, поэтому сближение двух силовых линий (взаимодействие между двумя полями) вызывает одно из двух явлений магнетизма:

  1. Отталкивание полюсов.
  2. Притягивание полюсов.

Эффект взаимодействия между полями с учётом разного расположения относительно полюсов: 1 – разноимённые полюса вызывают эффект притягивания; 2 – одноимённые полюса вызывают эффект отталкивания; 3 – направление силовых линий

Этот эффект легко запоминается благодаря известному выражению «противоположности притягиваются».

Это взаимодействие магнитных полей, показывающие силовые линии окружающие магнит, легко продемонстрировать, используя железные наполнители.

Влияние на магнитные поля различных комбинаций полюсов, когда одинаковые полюсы отталкиваются и в отличие от полюсов притягиваются, показано на картинке выше.

Магнитное поле одноименных и разноименных полюсов

Анализ линий магнитного поля с помощью компаса позволяет видеть, что созданием силовых линий придаётся определённый полюс на каждом конце магнита. Эффект магнетизма может быть нарушен нагреванием или ударом магнитного материала, но магнетизм невозможно уничтожить или изолировать, простым разделением магнита на две части.

Поэтому, если используя обычный стержневой магнит, разбить тело этого объекта на две части, двух половинок одного магнита получить не удастся. Вместо этого каждая часть слома образует полноценный магнит, наделённый «северным» и «южным» полюсами.

Продолжением разделения пополам других полученных частей приведёт к тому же результату. Независимо от того, насколько маленькими становятся кусочки магнита, у каждого кусочка будет формироваться «северный» и «южный» полюс, соответственно.

Определение величины магнетизма

Как отмечалось ранее, силовые линии (магнитный поток) магнитного материала обозначается греческим символом «Фи» (φ). Под единицей измерения потока используется Вебер (латинское обозначение Wb, русское – Вб). Число силовых линий в пределах данной единичной области называется «плотностью потока».

Поскольку магнитный поток измеряется в Веберах, а площадь в метрах квадратных, следовательно, плотность потока измеряется отношением Вб / S и обозначается латинским символом — B.

Однако когда речь идет о магнетизме, плотность потока задается в единицах Тесла, поэтому один Вб / S равен одному Тесла (1Вб / 1м2 = 1T). Плотность потока пропорциональна силовым линиям и обратно пропорциональна площади. Отсюда плотность магнитного потока определяется как:

B = φ / S

Пример определения силы магнетизма

Количественный показатель магнитного потока, присутствующего в круглом магнитном стержне, равен 0,06 Вб. Какая плотность магнитного потока, если диаметр стержня магнита равен 24 см? Решение:

Сначала определяется площадь поперечного сечения стержня (в м2):

S = π * R2 (3.14 * 0.122) = 0.045

Далее рассчитывается плотность магнитного потока (в Тесла):

B = φ / S = 0. 06 / 0.045 = 1.33

Если применительно к магнетизму электрических цепей 1Т — это плотность магнитного поля, проводник, несущий ток 1А под прямым углом к магнитному полю, испытывает нагрузку магнитной силы в один ньютон на метр.

При помощи информации: ElectronicsTutorials

Источник: https://zetsila.ru/%D1%87%D1%82%D0%BE-%D1%82%D0%B0%D0%BA%D0%BE%D0%B5-%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D0%BC/

Закон Кулона

Обобщая результаты экспериментов с крутильными весами, Кулон предложил закон, в соответствии с которым пара точечных зарядов (рис.1) $q_1$ и $q_2$, находящихся в вакууме действуют друг на друга с силами равными $F$, направленными вдоль прямой, которая соединяет рассматриваемые заряды, при этом:

$\vec{F}_{12}=\frac{1}{4\pi \varepsilon_{0}}\frac{q_{1}q_{2}}{\left|r_{2}-r_{1} \right|{3}}\left( \vec{r}_{2}-\vec{r}_{1}\right)=-\vec{F}_{21}\left( 1 \right)$,

где $ \epsilon_0=8,85\bullet 10{-12}$ Ф/м – электрическая постоянная; $\vec F_{12 }$ — сила, действующая на заряд $q_2$ со стороны заряда $q_1$.

Рисунок 1. Закон Кулона. Автор24 — интернет-биржа студенческих работ

Замечание 2

Одноименные заряды отталкиваются, противоположные притягиваются.

Закон Кулона – это основной закон электростатики.

Для вычисления сил взаимодействия заряженных тел произвольных форм и размеров используют принцип суперпозиции, который можно сформулировать следующим образом:

Взаимодействие пары точечных зарядов не изменяется, если внести третий заряд. Он будет взаимодействовать с первыми двумя зарядами.

Закон Ампера

Датский физик Г. Эрстед обнаружил, что магнитная стрелка, при нахождении рядом с проводом с током может поворачиваться. Данное открытие стало основанием для вывода о связи магнитных и электрических явлений. Основным в открытии Эрстеда было то, что магнит реагировал на перемещающийся электрический заряд. Появилось понимание того, что магнитное поле создается перемещающимся зарядом.

Проводя анализ экспериментов Эрстеда, А. Ампер выдвинул гипотезу о том, что земной магнетизм порождается токами, которые обтекают нашу планету в направлении с запада на восток.

Вывод был сделан следующий:

Магнитные свойства каждого тела определены замкнутыми электрическими токами в нем.

Ампер установил, что два проводника с токами взаимодействуют. Если токи в параллельных проводниках однонаправленные, то эти проводники притягиваются.

Результатом экспериментов Ампера стал закон, который назвали его именем.

Сила взаимодействия пары контуров с током зависит от силы тока в каждом контуре и уменьшается при увеличении расстояния между рассматриваемыми контурами:

$d\vec{F}_{12}=\frac{\mu_{0}}{4\pi }\frac{I_{1}I_{2}(d\vec{l}_{2}\times(d\vec{l}_{1}\times \vec{r}_{12})}{r_{12}{3}}\left( 2 \right)$,

где $\mu_0=4\pi\bullet 10{-7}$ Н/$A2$ — магнитная постоянная; $ d\vec F_{12}$ – сила, с которой первый элемент с током действует на второй. Выражение (2) содержит двойное векторное произведение; $I_1; I_2$ — силы токов, которые текут в проводниках; $I_1d\vec l_1$; $I_2d\vec l_2$ — элементы токов (рис.2).

Рисунок 2. Закон Ампера. Автор24 — интернет-биржа студенческих работ

Закон Био – Савара – Лапласа

Проводники с током воздействуют друг на друга, посредством магнитных полей, которые их окружают.

Введем векторную величину $\vec B$, которая будет характеристикой магнитного поля. Для этого параметра поля был установлен экспериментально закон, который получил название по именам его первооткрывателей, закон Био – Савара- Лапласа:

$dB=\frac{\mu_{0}}{4\pi }\frac{Idl}{r{2}}\sin {\alpha \, \left( 3\right),}$,

где $Idl$ — элемент с током, который создает магнитное поле; $r$ — расстояние до точки в которой поле рассматривается поле; $\alpha$ — угол между векторами $d\vec l$ и $\vec r$.

Полученный вектор индукции нормален к векторам $d\vec l$ и $\vec r$, его направление определяют при помощи правила буравчика:

Если правый винт поворачивать по направлению тока, то вектор индукции в каждой точке параллелен направлению бесконечно малого перемещения конца рукоятки буравчика.

Замечание 3

Закон Био – Савара- Лапласа играет такую же роль в магнитостатике, как закон Кулона в электростатике.

Закон Ома

В начале XIX века Г. Ом рассматривая процессы течения электрического тока в цепи, имеющей источник установил, что:

$I=\frac{Ɛ}{r+R}\left( 4 \right)$,

где $I$ — сила тока в цепи; $Ɛ$ — электродвижущая сила источника тока; $r$ — внутреннее сопротивление источника; $R$ — сопротивление цепи (внешнее). Выражение (4) описывает ситуацию в замкнутой цепи.

Если рассматривать участок цепи, по которому течет ток, то закон Ома представляется в виде:

$I=\frac{U}{R}\left( 5 \right)$.

где $U$ — напряжение участка; $R$ — сопротивление участка.

Если участок цепи содержит источник, то закон Ома предстанет в виде:

$IR=Ɛ-Ir$(6).

Выражение (6) означает, что напряжение на нагрузке меньше ЭДС на величину, равную падению напряжения ($Ir$) на внутреннем сопротивлении источника.

Закон Ома в виде (4-6) называют законом в интегральной форме.

Закон Ома в дифференциальной форме можно записать как:

$\vec{j}=\frac{1}{\rho }\vec{E}\left( 7 \right)$,

где $\vec j$ — вектор плотности тока; ρ – удельное сопротивление проводника; $\vec E$ — вектор напряженности электрического поля.

Закон индукции Фарадея

Электромагнитная индукция была открыта Фарадеем в 1881 году.

Фарадей понимал электромагнитную индукцию как возбуждение токов в проводниках под воздействием магнитного поля.

Экспериментально доказано, что электродвижущая сила (ЭДС) ($Ɛ $) индукции в контуре пропорциональна скорости изменения магнитного потока сквозь рассматриваемый контур. В Международной системе единиц (СИ) данный результат выражен формулой:

$Ɛ=-\frac{dФ}{dt}\left( 8 \right)$,

где $Ф$ -переменный магнитный поток через замкнутый контур или его часть.

В общем случае изменение магнитного потока сквозь плоский контур вызвано:

  • переменным во времени магнитным полем;
  • движением контура в поле и переменой его ориентации.

Уравнения Максвелла

Максвелл доказал, что сущностью электромагнитной индукции стало создание магнитным полем вихревого электрического поля. Индукционный ток является вторичным эффектом, который появляется в проводящих веществах. Трактовка электромагнитной индукции, которую дал Максвелл стала более общей.

Уравнения Максвелла стали математическим основанием классического электромагнетизма.

Запишем их в виде системы:

$rot\, \vec{E}=-\frac{\partial \vec{B}}{\partial t}\left( 9 \right)$,

$rot\, \vec{H}=\vec{j}+\frac{\partial \vec{D}}{\partial t}\left( 10 \right)$,

$div\, \vec{D}=\rho \left( 11 \right)$,

$div\, \vec{B}=0\left( 12 \right)$.

В выражениях (9)- (12) мы имеем:$\vec E$ и $\vec D$ — напряженность и индукция электрического поля;

$\vec H$ и $\vec B$ — напряженность и магнитная индукции;

$\rho$ — объемная плотность электрического заряда;

$\vec j$ — плотность тока.

Уравнения Максвелла у нас представлены в дифференциальной форме. Для однозначного описания электромагнитных полей уравнения Максвелла дополняют материальными уравнениями среды. В общем виде они записываются в виде функций:

$\vec D=\vec D(\vec E)$; $\vec B=\vec B(\vec H)$; $\vec j=\vec j(\vec E)$.

Источник: https://spravochnick.ru/fizika/elektromagnetizm/

Booksm
Добавить комментарий