Электроемкость. Конденсаторы

Электрическая емкость. Конденсаторы

Электроемкость. Конденсаторы

  • Проводники и диэлектрики в электростатическом поле

    Вещества в природе можно разделить на проводники и диэлектрики.

    Основная особенность — наличие свободных зарядов (электронов), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника.

    Типичные проводники — металлы.

  • Диэлектрическая проницаемость вещества

    В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки.

    В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды.

    Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды — индукционными зарядами.

    В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

  • Физическая величина, равная отношению модуля напряженности \(\vec{E}_0\) внешнего электрического поля в вакууме к модулю напряженности \(\vec{E}\) полного поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества \(\varepsilon\).

    \[\varepsilon=\dfrac{\vec{E}_0}{\vec{E}}\]

  • Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда \(q\) одного из проводников к разности потенциалов \(\Delta \varphi\) между ними:

    \[\ox{$C=\dfrac{q}{\Delta \varphi}$}\]

    Единицы измерения: \(\displaystyle [\text{Ф}]\) (фарад).

    Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники.

  • Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, — обкладками.

  • Плоский конденсатор — система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.

  • Электроемкость плоского конденсатора

    Разность потенциалов \(\Delta \varphi\) между пластинами в однородном электрическом поле равна \(Ed\), где \(d\) — расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:

    \[C=\dfrac{q}{\Delta \varphi}=\dfrac{\sigma S}{Ed}=\dfrac{\varepsilon_0S}{d}\]

    Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в \(\varepsilon\) раз:

    \[\ox{$C=\dfrac{\varepsilon_0\varepsilon S}{d}$}\]

  • Электрическое поле плоского конденсатора в основном локализовано между пластинами; однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния. В целом ряде задач приближенно можно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками.

  • Последовательное и параллельное соединение конденсаторов

    Для достижения нужной емкости или при напряжении, превышающем номинальное напряжение, конденсаторы, могут соединяться последовательно или параллельно. Любое же сложное соединение состоит из нескольких комбинаций последовательного и параллельного соединений.

    • Последовательное соединение конденсаторовПри последовательном соединении, конденсаторы подключены таким образом, что только первый и последний конденсатор подключены к источнику тока одной из своих пластин. Заряд одинаков на всех пластинах, но внешние заряжаются от источника, а внутренние образуются только за счет разделения зарядов ранее нейтрализовавших друг друга. При этом заряд конденсаторов в батарее меньше, чем, если бы каждый конденсатор подключался бы отдельно. Следовательно, и общая емкость батареи конденсаторов меньше.Напряжение на данном участке цепи соотносятся следующим образом:\[\ox{$U=U_1+U_2$}\]Зная, что напряжение конденсатора можно представить через заряд и емкость, запишем:\[\dfrac{q}{C}=\dfrac{q}{C_1}+\dfrac{q}{C_2}\]Сократив выражение на \(Q\), получим формулу:\[\ox{$\dfrac{1}{C}=\dfrac{1}{C_1}+\dfrac{1}{C_2}$}\]Откуда эквивалентная емкость батареи конденсаторов соединенных последовательно:\[\ox{$C=\dfrac{C_1C_2}{C_1+C_2}$}\]
    • Параллельное соединение конденсаторовПри параллельном соединении конденсаторов напряжение на обкладках одинаковое, а заряды разные.Величина общего заряда полученного конденсаторами, равна сумме зарядов всех параллельно подключенных конденсаторов. В случае батареи из двух конденсаторов:\[\ox{$q=q_1+q_2$}\]Так как заряд конденсатора\[q=CU\]А напряжения на каждом из конденсаторов равны, получаем следующее выражение для эквивалентной емкости двух параллельно соединенных конденсаторов\[CU=C_1U+C_2U\]\[\ox{$C=C_1+C_2$}\]
    • По сути, расчет общей емкости конденсаторов схож с расчетом общего сопротивления цепи в случае с последовательным или параллельным соединением, но при этом, зеркально противоположен.
  • Энергия заряженного конденсатора

    Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии того, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится. Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке.

    Вычислим эту энергию: начнём с плоского воздушного конденсатора.

    Ответим на такой вопрос: какова силу притяжения его обкладок друг к другу. Величины используем следующие: заряд конденсатора \(q\), площадь обкладок \(S\). Возьмём на второй обкладке настолько маленькую площадку, что заряд \(q_0\) этой площадки можно считать точечным. Данный заряд притягивается к первой обкладке с силой

    \[F_0 = q_0E_1,\]

    где \(E_1\) — напряжённость поля первой обкладки:

    \[E_1=\dfrac{\sigma}{2\varepsilon_0}=\dfrac{q}{2\varepsilon_0S}\]

    Значит

    \[F_0=\dfrac{qq_0}{2\varepsilon_0S}\]

    Направлена эта сила параллельно линиям поля (т.е. перпендикулярно пластинам).

    Результирующая сила \(F\) притяжения второй обкладки к первой складывается из всех этих сил \(F_0\), с которыми притягиваются к первой обкладке всевозможные маленькие заряды \(q_0\) второй обкладки.

    При этом суммировании постоянный множитель \(\displaystyle\dfrac{q}{2\varepsilon_0S}\) вынесется за скобку, а в скобке просуммируются все \(q_0\) и дадут \(q\). В результате получим

    \[F=\dfrac{q2}{2\varepsilon_0S}\]

    Предположим теперь, что расстояние между обкладками изменилось от начальной величины \(d_1\) до конечной величины \(d_2\). Сила притяжения пластин совершает при этом работу \[A = F(d_1 -d_2)\]

    Знак правильный: если пластины сближаются \((d_2 < d_1)\), то сила совершает положительную работу, так как пластины притягиваются друг к другу. Наоборот, если удалять пластины \((d_2 > d_1)\), то работа силы притяжения получается отрицательной, как и должно быть.

    Получаем

    \[A=\dfrac{q2}{2\varepsilon_0S}(d_1-d_2)=\dfrac{q2d_1}{2\varepsilon_0S}-\dfrac{q2d_2}{2\varepsilon_0S}=\dfrac{q2}{2C_1}-\dfrac{q2}{2C_2}=W_1-W_2\]

    Это можно переписать следующим образом: \[A =-(W_2-W_1) =-\Delta W,\]

    где \[\ox{$W=\dfrac{q2}{2C}$}, (1)\]

    Работа потенциальной силы \(F\) притяжения обкладок оказалась равна изменению со знаком минус величины \(W\). Это как раз и означает, что \(W\) — потенциальная энергия взаимодействия обкладок, или энергия заряженного конденсатора. Используя соотношение \(q = CU\), можно получить ещё две формулы для энергии конденсатора (проделать это самостоятельно).

    \[\ox{$W=\dfrac{qU}{2}$}, (2)\]

    \[\ox{$W=\dfrac{CU2}{2}$}, (3)\]

    Формулы (1)—(3) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.

  • Источник: https://physics.shkolkovo.net/theory/elektricheskaya_emkost_kondensatory

    Электроемкость. Конденсатор . урок. Физика 10 Класс

    Электроемкость. Конденсаторы

    На этом уроке мы начнем изучение нового прибора – конденсатора – и новой физической величины – электроемкости. Исходя из опытов, мы рассмотрим количественную неодинаковость электризации разных тел одинаковыми зарядами, познакомимся с прибором для накопления зарядов и его основными характеристиками.

    Тема: Основы электродинамики
    Урок: Электроёмкость. Конденсаторы

    На предыдущих уроках мы знакомились с элементарными электрическими понятиями и принципами, в частности, мы говорили об электризации – явлении перераспределения заряда. Разговор о более глубоком исследовании этого явления начнем с опыта.

    Изначально пусть нам даны две разные по размеру изолированные банки, подключенные к электроскопу (рис. 1):

    Рис. 1

    Теперь к каждой из банок поднесли одинаково заряженное тело. Естественно, с каждой банкой произойдет процесс электризации, и стрелки обоих электроскопов разойдутся. Однако оказалось, что электроскоп большей банки показал меньшее отклонение (рис. 2):

    Рис. 2

    Данный опыт доказывает, что различные тела электризуются одним и тем же зарядом по-разному (конкретно большая банка одним и тем же зарядом зарядилась до меньшего потенциала). И существует некоторая величина, которая показывает способность тела накапливать электрический заряд. Собственно, о ней и пойдет речь.

    Определение. Электроемкость (емкость) – величина, равная отношению заряда переданного проводнику к потенциалу этого проводника.

    Здесь:  – емкость;  – переданный заряд;  – потенциал, до которого зарядился проводник.

    Теперь непосредственно познакомимся со специализированными приборами для накопления зарядов.

    Определение. Конденсатор – набор проводников, служащий для накопления электрического заряда. Конденсаторы состоят из двух проводников и разделяющего их диэлектрика, причем толщина диэлектрического слоя много меньше размеров проводников (рис. 3).

    Рис. 3. Схематическое изображение конденсатора (Источник)

    Особое внимание мы будем уделять так называемым плоским конденсаторам (слой диэлектрика расположен между двумя плоскими пластинами проводника). На электрической схеме конденсатор обозначается следующим образом (рис. 4): 

    Рис. 4. Условное обозначение конденсатора на электрической схеме

    Емкость конденсатора определяется так же, как и любая другая электроемкость, однако с небольшим отличием (так как речь идет о системе проводников, а не о отдельно взятом проводнике, в формуле фигурирует не потенциал, а разность потенциалов или напряжение)

    Здесь:  – заряд на обкладках конденсатора (так называются проводники, из которых состоит конденсатор);  – напряжение между обкладками конденсатора.

    Единица измерения емкости: Ф – фарад

    Однако, конечно же, емкость конденсатора – не постоянная величина, она зависит от конструкторских особенностей самого конденсатора. В случае плоского конденсатора эта зависимость имеет следующий вид:

    Здесь:  – диэлектрическая проницаемость среды;  – электрическая постоянная;  – площадь обкладки конденсатора;  – расстояние между обкладками.

    В конденсаторах роль диэлектрической прослойки, как правило, выполняет пропитанная соответствующим составом бумага, расположенная между двумя тонкими листами металла (рис. 5).

    Рис. 5. Устройство конденсатора (Источник) 

    Конденсаторы можно разделить на три основных типа: 

    Конденсатор постоянной емкости – это свернутая в рулон упомянутая выше трехслойная лента (две ленты проводника и лента диэлектрика между ними).

    Конденсаторы переменной емкости – приборы, используемые в радиотехнике, позволяющие регулировать параметры, от которых зависит емкость – ширина пластин и расстояние между ними (рис. 6).

    Батарея же конденсаторов – это несколько конденсаторов, связанных по определенной схеме. 

    Рис. 6. Модель конденсатора переменной емкости (Источник)

    Конденсатор – прибор для накопления заряда, и проводники, на которых накапливается заряд, создают между собой электрическое поле, а значит, конденсатор обладает некоторой энергией.  Энергия конденсатора, по закону сохранения энергии, должна быть равна работе, выполненной по разделению зарядов.

    Как мы уже знаем, работа по перемещению заряда в поле равна:

    Здесь:  – заряд;  – напряженность;  – модуль перемещения.

    И теперь, если рассмотреть наш случай поля конденсатора, получается, что напряженность  создается одновременно двумя обкладками, и для рассмотрения одной обкладки мы должны записать

    Рис. 7. Однородное поле конденсатора

    Воспользовавшись теперь формулой связи напряженности и напряжения из прошлого урока:

    Формула для энергии конденсатора принимает вид:

    Использовав в этой формуле формулу определения емкости конденсатора, можно получить еще две формы записи для энергии:

    или

    Этот урок завершает тему электростатики. Следующий будет посвящен уже электрическому току.

    Дополнение 1. Электроемкость шара.

    Для того чтобы оценить насколько велика емкость в 1 Ф, возьмем в качестве накапливающего заряд тела проводящий шар и выведем зависимость его емкости от его размеров.

    Из предыдущего урока мы знаем формулу для определения потенциала шара:

    Подставим теперь её в определение емкости:

    Давайте рассмотрим случай в вакууме или же в воздухе (). Каковы же должны быть размеры шара, чтобы его емкость равнялась 1 Ф?

    Для сравнения радиус Земли равен:

    Дополнение 2. Соединение конденсаторов.

    Иногда не получается найти конденсатор нужной конфигурации, тогда приходится составлять блоки из нескольких конденсаторов. Соединить два или более конденсатора можно двумя различными способами: параллельно или последовательно.

    Параллельное соединение (рис. 8):

    Рис. 8. Параллельное соединение конденсаторов

    Так как выходы источника питания подсоединены одновременно к обкладкам всех конденсаторов, то потенциалы всех обкладок равны, металл является эквипотенциальной поверхностью:

    Заряды на обкладках параллельно соединенных конденсаторов суммируются:

    Разделив второе равенство на напряжение (любое, так как они равны) и воспользовавшись определением емкости конденсатора, получим:

    Последовательное соединение (рис. 9):

    Рис. 9. Последовательное соединение конденсаторов

    Так как две обкладки соседних конденсаторов являются одной деталью, отрезанной от остальных проводников, по закону сохранения заряда, сумма их зарядов должна оставаться равной нулю, а значит, они равны по модулю, но противоположны по знаку, поэтому:

    Падение же напряжения на всем участке складывается из падений напряжения на каждом конденсаторе:

    Теперь, разделив второе равенство на заряд (любой, так как они равны) и воспользовавшись определением емкости конденсатора, получим:

    Список литературы

    1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
    2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
    3. Касьянов В.А. Физика 10 класс. – М.: Дрофа, 2010.

    Дополнительные рекомендованные ссылки на ресурсы сети Интернет

    Домашнее задание

    1. Стр. 96-98: № 750–755. Физика. Задачник. 10-11 классы. Рымкевич А.П. – М.: Дрофа, 2013. (Источник)
    2. Во сколько раз изменится емкость конденсатора, если листовую слюду заменить парафином той же толщины?
    3. Какую площадь должны иметь пластины плоского конденсатора, для того чтобы его электроемкость была равна 1 пФ? Расстояние между пластинами – 0,5 мм.
    4. Емкость одного конденсатора больше емкости другого в 4 раза, на какой конденсатор нужно подать большее напряжение, чтобы их энергии стали одинаковыми, во сколько раз больше?
    5. *Почему большой заряд не может удержаться на сфере маленького радиуса?

    Источник: https://interneturok.ru/lesson/physics/10-klass/osnovy-elektrodinamiki-2/elektroemkost-kondensator-variant-1-eryutkin-e-s?konspekt

    Электроемкость конденсаторов. Расчет (формула) энергии заряженных конденсаторов

    Электроемкость. Конденсаторы

    › Теория ›

    05.12.2019

    Электроемкость конденсатора – это характеристика двух проводников, которые находятся в теле устройства. Эта величина не зависит от номинала заряда и величины его напряжения. На нее влияют геометрия и габариты самых проводников, их месторасположения относительно друг друга, а также технических характеристик диэлектрика, который находится между ними и его свойств.

    Большая часть этих радиодеталей имеют плоский вид. В качестве проводников используются пластины из алюминия или фольги из него. В качестве диэлектрика выступает бумага, пропитанная парафином или слюда. Они так и называются – слюдяные, бумажные или воздушные.

    В данной статьи рассмотрены все вопросы по расчеты электроемкости конденсаторов. В качестве бонуса. в конце статьи читатель найдет видеоролик по теме и интересный материал, расчету электроемкости.

    Электроемкость

    Электроемкость — это скалярная величина, характеризующая способность проводника накапливать электрический заряд.

    Электроемкость:

    • не зависит от q и U;
    • зависит от геометрических размеров проводника, их формы, взаимного расположения, электрических свойств среды между проводниками.

    Электрической емкостью проводника наз. отношение заряда проводника к его потенциалу:

    единица измерения емкости в СИ: Ф (фарад)

    Конденсатор обладает свойством накапливать и сохранять электрическую энергию.

    Конденсатор представляет собой систему из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.  Проводники наз. обкладками  конденсатора.

    Если заряды пластин конденсатора одинаковы по модулю и противоположны по знаку, то  под зарядом конденсатора понимают абсолютное значение заряда одной из его обкладок.

    Материал по теме: Как проверить конденсатор

    Электроемкостью конденсатора называют отношение заряда конденсатора к разности потенциалов между обкладками.  Основные слагаемые электроемкости представлены на рисунке ниже:

    Основные слагаемые электроемкости.

    Обозначение на электрических схемах:

    • Все электрическое поле сосредоточено внутри конденсатора.
    • Заряд конденсатора — это абсолютное значение заряда одной из обкладок конденсатора.

    Виды конденсаторов:

    • по виду диэлектрика — воздушные, слюдяные, керамические, электролитические.
    • по форме обкладок — плоские, сферические.
    • по величине емкости — постоянные, переменные (подстроечные).

    Электроемкость плоского конденсатора

    где S — площадь пластины (обкладки) конденсатора

    • d — расстояние между пластинами
    • εо — электрическая постоянная

    ε — диэлектрическая проницаемость диэлектрика

    Конденсатор — это система заряженных тел обладает энергией.

    Энергия любого конденсатора:

    где С — емкость конденсатора, (Ф)                     W— энергия (Дж) q — заряд конденсатора, (Кл)

    U — напряжение на обкладках конденсатора, (В

    Электрическая емкость конденсатора

    Дальнейшие опыты с распределением электричества по поверхности наэлектризованного проводника, проводимые Кулоном и другими естествоиспытателями, позволили установить, что равномерное распределение электричества имеет место только на правильной шаровой поверхности.

    В общем случае заряд неравномерен и зависит от формы проводника, будучи больше в местах большей кривизны. Отношение количества электричества на части поверхности проводника к величине этой поверхности назвали плотностью (толщиной) электрического слоя.

    Экспериментально было установлено, что электрическая плотность и электрическая сила особенно велики в местах поверхности, имеющих наибольшую кривизну, особенно на остриях.

    Интересный материал для ознакомления: что такое вариасторы.

    Величину, характеризующую зависимость потенциала наэлектризованного проводника от его размеров, формы и окружающей среды, называют электроемкостью проводника и обозначают буквой С. Электроемкость проводника измеряется количеством электричества, необходимым для повышения потенциала этого проводника на единицу:

    С = q/ϕ.

    За единицу электроемкости в системе СИ принимается 1 фарада (1 Ф). Фарадой называется электроемкость проводника, которому для повышения его потенциала на один вольт нужно сообщить один кулон электричества.

    Электроемкостью, равной 1 Ф, обладал бы шар радиусом 9·10 6 км, что в 23 раза больше расстояния от Земли до Луны. Если проводник соединить с источником электричества определенного потенциала, то проводник получит электрический заряд, зависящий от емкости проводника.

    Его емкость, а, следовательно, и количество электричества, которым он заряжается, увеличиваются, если приблизить к нему второй проводник, соединенный с землей.

    Конструкция, состоящая из двух проводников, разделенных изолятором, с электрическим полем между ними, все силовые линии которого начинаются на одном проводнике, а заканчиваются на другом, была названа электрическим конденсатором.

    При этом оба проводника называются обкладками, а изолирующая прокладка – диэлектриком. Процесс накопления зарядов на обкладках конденсатора называется его зарядкой.

     При зарядке на обеих обкладках накапливаются равные по величине и противоположные по знаку заряды.

    Поскольку электрическое поле заряженного конденсатора сосредоточено в пространстве между его обкладками, то электроемкость конденсатора не зависит от окружающих тел. Электроемкость конденсатора измеряется отношением количества электричества на одной из обкладок к разности потенциалов между обкладками:

    С = q/ U.

    1 Ф – электроемкость такого конденсатора, который может быть заряжен количеством электричества, равным 1 Кл, до разности потенциалов между обкладками, равной 1 В. Например, электрическая емкость плоского конденсатора в системе СИ определяется по соотношению:

    С =εε 0 S/ d, где ε – диэлектрическая проницаемость материала, находящегося между обкладками конденсатора; ε 0 – диэлектрическая проницаемость вакуума; S – величина площади поверхности пластины (меньшей, если они не равны); d – расстояние между пластинами.

    Если обкладки заряженного конденсатора соединить проводником, то заряды будут переходить с одной обкладки на другую и нейтрализуют друг друга. Этот процесс называется разрядкой конденсатора.

    Каждый конденсатор рассчитан на определенное напряжение. Если напряжение между обкладками станет слишком большим, то разрядка может произойти и непосредственно через диэлектрик (без соединительного проводника), т.е.

    получится пробой диэлектрика.

    Пробитый конденсатор к дальнейшему употреблению не пригоден. Для получения электроемкости нужной величины конденсаторы соединяют в батарею. На практике встречается как параллельное, так и последовательное соединение конденсаторов.

    Единицы измерения

    Физическая величина, определяемая отношением заряда q одной из пластин конденсатора к напряжению между обкладками конденсатора, называется электроемкостью конденсатора:

    При неизменном расположении пластин электроемкость конденсатора является постоянной величиной при любом заряде на пластинах.
    Единица электроемкости в международной системе – фарад (Ф).

    Электроемкостью 1 Ф обладает такой конденсатор, напряжение между обкладками которого равно 1 В при сообщении обкладкам разноименных зарядов по 1 Кл. .

    В практике широко используются дольные единицы электроемкости – микрофарад (мкФ), нанофарад (нФ) и пикофарад (пФ):

    • 1 мкФ = 10-6Ф;
    • 1 нФ = 10-9Ф;
    • 1 пФ = 10-12Ф.

    Электроемкость конденсатора прямо пропорциональна площади обкладок и обратно пропорциональна расстоянию между обкладками.

    При введении диэлектрика между обкладками конденсатора его электроемкость увеличивается в e раз.

    Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников.

    Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U. Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q. В этом случае можно ввести понятие электрической емкости.

    Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками. Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.

    Такой конденсатор называется плоским. Электрическое поле плоского конденсатора в основном локализовано между пластинами (рисунок 1); однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния.

    В целом ряде задач можно приближенно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками (рисунок 2). Но в других задачах пренебрежение полем рассеяния может привести к грубым ошибкам, так как при этом нарушается потенциальный характер электрического поля.

    Согласно принципу суперпозиции, напряженность  поля, создаваемого обеими пластинами, равна сумме напряженностей  и  полей каждой из пластин. Вне пластин вектора  и  направлены в разные стороны, и поэтому E = 0.

     Поверхностная плотность σ заряда пластин равна q/S, где q – заряд, а S – площадь каждой пластины. Разность потенциалов Δφ между пластинами в однородном электрическом поле равна Ed, где d – расстояние между пластинами.

    Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:

    Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз. Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы.

    Потенциал φ (отсчитываемый от нулевого уровня на бесконечности) пропорционален заряду q проводника, т.е. отношение q к φ не зависит от q. Это позволяет ввести понятие электроемкости. С уединенного проводника, которая равна отношению заряда проводника к потенциалу:

    С = q/ φ

    Таким образом, чем больше электроемкость, тем больший заряд может накопить проводник при данном φ. Электроемкость определяется геометрическими размерами проводника, его формой и электрическими свойства окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника.

    В частности, электроемкость проводящего шара в вакууме равна его радиусу. Наличие вблизи проводника других тел изменяет его электроемкость, так как потенциал проводника зависит и от электрических полей, создаваемых зарядами, наведенными в окружающих телах вследствие электростатической индукции.

    В системе ед. СГСЭ электроемкость измеряется в сантиметрах, в СИ – в фарадах: 1Ф = 9*1011 см.
    Понятие электроемкости относится также к системе проводников, в частности двух проводников, разделённых тонким слоем диэлектрика, – электрическому конденсатору. Электроемкость конденсатора (взаимная ёмкость его обкладок)

    С = q/ (φ1 – φ2),

    где q – заряд одной из обкладок (заряды обкладок по абсолютной величине равны), φ1 – φ2 – разность потенциалов между обкладками. Электроемкость конденсатора практически не зависит от наличия окружающих тел и может достигать очень большой величины при малых геометрических размерах конденсаторов.

    Заключение

    Источник: https://ElectroInfo.net/teorija/chemu-ravna-jelektroemkost-kondensatora.html

    1.6. Электроемкость. Конденсаторы

    Электроемкость. Конденсаторы
    

    Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников.

    Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U. Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q.

    В этом случае можно ввести понятие электрической емкости.

    Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:

    В системе СИ единица электроемкости называется фарад (Ф):

    Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, – обкладками.

    Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским.

    Электрическое поле плоского конденсатора в основном локализовано между пластинами (рис. 1.6.1); однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния.

    В целом ряде задач приближенно можно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками (рис. 1.6.2).

    Но в других задачах пренебрежение полем рассеяния может привести к грубым ошибкам, так как при этом нарушается потенциальный характер электрического поля (см. § 1.4).

    Рисунок 1.6.1.Поле плоского конденсатора
    Рисунок 1.6.2.Идеализированное представление поля плоского конденсатора. Такое поле не обладает свойством потенциальности

    Каждая из заряженных пластин плоского конденсатора создает вблизи поверхности электрическое поле, модуль напряженности которого выражается соотношением (см. § 1.3)

    Согласно принципу суперпозиции, напряженность поля, создаваемого обеими пластинами, равна сумме напряженностей и полей каждой из пластин:

    Внутри конденсатора вектора и параллельны; поэтому модуль напряженности суммарного поля равен

    Вне пластин вектора и направлены в разные стороны, и поэтому E = 0. Поверхностная плотность σ заряда пластин равна q / S, где q – заряд, а S – площадь каждой пластины.

    Разность потенциалов Δφ между пластинами в однородном электрическом поле равна Ed, где d – расстояние между пластинами.

    Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:

    Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз:

    Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы. Сферический конденсатор – это система из двух концентрических проводящих сфер радиусов R1 и R2.

    Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R1 и R2 и длины L.

    Емкости этих конденсаторов, заполненных диэлектриком с диэлектрической проницаемостью ε, выражаются формулами:

    (сферический конденсатор), (цилиндрический конденсатор).

    Конденсаторы могут соединяться между собой, образуя батареи конденсаторов. При параллельном соединении конденсаторов (рис. 1.6.

    3) напряжения на конденсаторах одинаковы: U1 = U2 = U, а заряды равны q1 = С1U и q2 = C2U.

    Такую систему можно рассматривать как единый конденсатор электроемкости C, заряженный зарядом q = q1 + q2 при напряжении между обкладками равном U. Отсюда следует

    Таким образом, при параллельном соединении электроемкости складываются.

    Рисунок 1.6.3.Параллельное соединение конденсаторов. C = C1 + C2
    Рисунок 1.6.4.Последовательное соединение конденсаторов.

    При последовательном соединении (рис. 1.6.4) одинаковыми оказываются заряды обоих конденсаторов: q1 = q2 = q, а напряжения на них равны и Такую систему можно рассматривать как единый конденсатор, заряженный зарядом q при напряжении между обкладками U = U1 + U2. Следовательно,

    При последовательном соединении конденсаторов складываются обратные величины емкостей.

    Формулы для параллельного и последовательного соединения остаются справедливыми при любом числе конденсаторов, соединенных в батарею.

    Модель. Поле плоского конденсатора


    

    Лучшие школы, лагеря, ВУЗы за рубежом
    Математика, Английский язык, Химия, Биология, Физика, География, Астрономия.
    А также: online подготовка к ЕГЭ на College.ru, библиотека ЭОРов и обучающие программы на Multiring.ru.

    Источник: https://physics.ru/courses/op25part2/content/chapter1/section/paragraph6/theory.html

    Электроемкость. Конденсаторы

    Электроемкость. Конденсаторы

    Если у нас есть два проводника, изолированных друг от друга, которым мы сообщаем некоторые заряды (обозначим их соответственно q1 и q2), то между ними возникнет определенная разность потенциалов.

    Ее величина будет зависеть от формы проводников, а также от исходных величин зарядов. Обозначим такую разность Δφ.

    Если мы говорим о разности, возникающей в электрическом поле между двумя точками, то ее обычно обозначают U.

    В рамках темы данной статьи нам больше всего интересна такая разность потенциалов между проводниками, когда их заряды противоположны по знаку, но равны друг другу по модулю. В таком случае мы можем ввести новое понятие – электрическая емкость (электроемкость).

    Определение 1

    Электрической емкостью системы, состоящей из двух проводников, называется отношение заряда одного проводника (q) к разности потенциалов между этими двумя проводниками.

    В виде формулы это записывается так: C=q∆φ=qU.

    Для измерения электрической емкости применяется единица, называемая фарад. Она обозначается буквой Ф.

    1Φ=1 Кл1 В.

    Конфигурации и размеры проводников, а также свойства диэлектрика определяют величину электроемкости заданной системы. Наибольший интерес для нас представляют проводники особой формы, называемые конденсаторами.

    Определение 2

    Конденсатор – это проводник, конфигурация которого позволяет локализовать (сосредотачивать) электрическое поле в одной выделенной части пространства. Проводники, составляющие конденсатор, называются обкладками.

    Определение 3

    Если мы возьмем две плоские пластины из проводящего материала, расположим их на небольшом расстоянии друг от друга и проложим между ними слой диэлектрика, то мы получим простейший конденсатор, называемый плоским. При его работе электрическое поле будет располагаться преимущественно в промежутке между пластинами, но небольшая часть этого поля будет рассеиваться вокруг них.

    Определение 4

    Часть электрического поля вблизи конденсатора называется полем рассеяния.

    Иногда в задачах мы можем не учитывать его и работать только с той частью электрического поля, которое расположено между обкладками. Однако пренебрегать полем рассеяния допустимо далеко не всегда, поскольку это может привести к ошибочным расчетам из-за нарушения потенциального характера электрического поля.

    Рисунок 1.6.1. Электрическое поле в плоском конденсаторе.

    Рисунок 1.6.2. Электрическое поле конденсатора без учета поля рассеяния, не обладающее потенциальностью.

    Модуль напряженности электрического поля, которое создает каждая обкладка в плоском конденсаторе, выражается соотношением следующего вида:

    E1=σ2ε0.

    Исходя из принципа суперпозиции, можно утверждать, что напряженность E→ поля, которое создают обе пластины конденсатора, будет равна сумме напряженностей E+→ и E-→ полей каждой пластины, то есть E→=E+→+E-→.

    Векторы напряженностей обеих пластин во внутренней части конденсатора будут параллельны друг другу. Значит, мы можем выразить модуль напряженности их суммарного поля в виде формулы E=2E1=σε0.

    Как рассчитать электроемкость конденсатора

    Вне пластин векторы напряженности будут направлены в противоположные друг от друга стороны, значит, E будет равно нулю. Если мы обозначим заряд каждой обкладки как q, а ее площадь как S, то соотношение qS даст нам представление о поверхностной плотности.

    Умножив E на расстояние между обкладками (d), мы получим разность потенциалов между пластинами в однородном электрическом поле. Теперь возьмем оба этих соотношения и выведем из них формулу, по которой может быть рассчитана электрическая емкость конденсатора.

    C=q∆φ=σ·SE·d=ε0Sd.

    Определение 5

    Электрическая емкость плоского конденсатора – величина, обратно пропорциональная расстоянию между обкладками и прямо пропорциональная их площади.

    Заполнение пространства между проводниками диэлектрическим материалом может увеличить электроемкость плоского конденсатора в число раз, кратное undefined.

    Определение 6

    Введем обозначение емкости в виде буквы С и запишем это в виде формулы:

    C=εε0Sd.

    Данная формула называется формулой электроемкости плоского конденсатора.

    Конденсаторы бывают не только плоскими. Возможны и другие конфигурации, также обладающие специфическими свойствами.

    Определение 7

    Сферическим конденсатором называется система из 2-х концентрических сфер, сделанных из проводящего материала, радиусы которых равны R1 и R2 соответственно.

    Определение 8

    Цилиндрическим конденсатором называется системы из двух проводников цилиндрической формы, длина которых равна L, а радиусы R1 и R2.

    Обозначим проницаемость диэлектрического материала как ε и запишем формулы, по которым можно найти электрическую емкость конденсаторов:

    • C=4πε0εR1R2R2-R1(сферический конденсатор),
    • C=2πε0εLlnR2R1(цилиндрический конденсатор).

    Как рассчитать электроемкость батареи конденсаторов

    Определение 9

    Если мы соединим несколько проводников между собой, то мы получим конструкцию, называемую батареей.

    Способы соединения могут быть разными. Если соединение будет параллельным, то напряжение всех конденсаторов в системе будет одинаково: U1=U2 =U, а заряды можно найти по формулам q1=С1U и q2=C2U. При таком соединении вся система может считаться одним конденсатором, электроемкость которого равна C, заряд – q=q1+q2, а напряжение – U. В виде формулы это выглядит так:

    С=q1+q2U или C=C1+C2

    Определение 10

    Если в батарее конденсаторов элементы соединены параллельно, то для нахождения общей электроемкости нам нужно сложить емкости ее отдельных элементов.

    Рисунок 1.6.3. Конденсаторы, соединенные параллельно. C=C1+C2

    Рисунок 1.6.4. Конденсаторы, соединенные последовательно: 1C=1C1+1C2

    Если же батарея состоит из двух последовательно соединенных конденсаторов, то заряды обоих будут одинаковы: q1=q2=q. Найти их напряжения можно так: U1=qC1 и U2=qC2. Такую систему тоже можно считать одним конденсатором, заряд которого равен q, а напряжение U=U1+U2.

    C=qU1+U2 или 1C=1C1+1C2

    Определение 11

    Если конденсаторы в батарее соединены последовательно, то для нахождения общей электроемкости нам нужно сложить величины, обратные емкостям каждого из них.

    Справедливость обеих формул, приведенных выше, не зависит от количества конденсаторов в батарее.

    Рисунок 1.6.5. Смоделированное электрическое поле плоского конденсатора.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Источник: https://Zaochnik.com/spravochnik/fizika/elektricheskoe-pole/elektroemkost-kondensatory/

    Booksm
    Добавить комментарий