Электрический ток в вакууме

Электрический ток в вакууме

Электрический ток в вакууме

Вообще говоря, в вакууме не может проходить электрический ток, если в нем нет носителей заряда. Если в вакууме присутствуют электроны, то их движение обусловит появление тока, который называют током в вакууме. Следовательно, необходимо, чтобы в вакууме появились электроны.

В металле имеется так называемый «электронный газ». При термодинамическом равновесии распределение электронов на энергоуровнях определено статистикой Ферми — Дирака и задано выражением:

где $\beta =\frac{1}{kT}$, $n_i$ — количество электронов, которые имеют энергию $E_i$, $g_i$ — число квантовых состояний, которые соответствуют энергии $E_i$, $\mu $ — энергия Ферми при температуре T (при $T\to 0K\ \mu \to {\mu }_{0\ }при\ T=0K$). Так как выражение для энергии Ферми записывают как:

В большинстве случаев $\mu \gg kT$, следовательно, для выражения (1) можно полагать $\mu ={\mu }_{0\ }.$

Допустим, что $E_0-\ $энергия электрона около поверхности вне металла. Используя формулу (1) можно вычислить вероятность того, что электрон имеет энергию $E_0$, если ее подставить в (1) вместо $E_i$. Найденная вероятность будет отлична от нуля, причем она увеличивается с ростом температуры.

Значит, вблизи поверхности металла присутствует электронное облако, находящееся в динамическом равновесии с электронным газом внутри металла.

Электроны из электронного облака внутри металла имеют кинетическую энергию, которой достаточно для того, чтобы преодолеть силы, которые удерживали их внутри и выйти за пределы вещества.

Электроны, находящиеся вне металла над его поверхностью при соответствующих условиях могут быть захвачены силами, которые удерживают электроны внутри. Получается, что в условиях динамического равновесия через поверхность металла протекают противоположно направленные токи, их силы равны по модулю. Сумма сил этих токов равна нулю.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Термоэлектронная эмиссия

Явление образования электронного облака около поверхности металла вследствие теплового движения свободных электронов называют термоэлектронной эмиссией. При абсолютном нуле температур явления термоэлектронной эмиссии нет. Это значит, что при $T=0K$ электронного облака над поверхностью металла не существует.

Электроны, имеющие кинетическую энергию $E_k\ $около поверхности металла имеют полную энергию ($E_i$) равную:

Тогда формула (1) имеет вид:

где $A_v=E_0-\mu $ — работа выхода электронов из металла. Из выражения (4) видно, что плотность электронного облака около поверхности металла зависит от работы выхода $A_v$ и уменьшается с ее увеличением.

Термоэлектронный ток

Определение 1

Если около поверхности металла есть электрическое поле, то электроны из электронного облака образуют электрический ток. Этот ток называют термоэлектронным.

И так, если в вакууме находятся две металлические пластинки, между ними существует разность потенциалов, то между этими пластинками появится термоэлектронный ток.

Сила тока должна расти при увеличении разности потенциалов. Для термоэлектронного тока существует сила тока насыщения.

Это максимальная сила тока, при которой все электроны, которые попадают с поверхности катода в электронное облако, достигают анода. При этом ни какого обратного тока электронов через поверхность внутрь катода нет.

Сила тока насыщения при увеличении разности потенциалов между анодом и катодом не изменяется.

Для металлов работа выхода составляет несколько электрон-вольт. При этом энергия $kT$ даже при больших температурах в тысячи кельвинов всего лишь доли электрон — вольта. Значит, $\frac{A_v}{kT}=A_v\beta \gg 1,\ \to exp\left[\beta \left(E_k+A_v\right)\right]\gg 1,$ следовательно, в знаменателе формулы (4) единицей можно пренебречь и записать эту формулу в виде:

Сила тока насыщения зависит от работы выхода и температуры.

Для чистых металлов существенный ток можно получить при температурах порядка $2000 К$, что означает, что в качестве катодов следует использовать металлы с высокой температурой плавления.

При этом надо, чтобы работа выхода у них была минимальна. Так, вольфрам, имеющий работу выхода $4,5 эВ$, должен быть нагрет до температуры $2500 К$x.

Для того чтобы уменьшить рабочую температуру и снизить работу выхода применяют оксидные катоды.

Характеристика электронного облака

Облако электронов около поверхности металла описывается формулой (5). В выражении (5) число квантовых состояний в элементе фазового объема $dxdydzdp_xdp_ydp_z$ запишется как:

Тогда количество электронов в элементе фазового объема будет равно:

где $E_k=\frac{p2}{2m_e}$. $p2={p_x}2+{p_y}2+{p_z}2$. Концентрацию электронного облака ($n_0$) около поверхности металла можно найти последовательным интегрированием выражения (7) по $dxdydz$ а за тем по $dp_xdp_ydp_z$, в результате получим:

Средняя кинетическая энергия электронов равна:

Плотность тока насыщения

Плотность тока насыщения ($j_n$) определяется формулой Ричардсона — Дешмана:

где $A=\frac{q_em_ek2}{2{\pi }2{\hbar }3}=1,2\cdot 106А\cdot м{-2}\cdot К{-2}.$ Часто формулу (10) представляют в виде:

Пример 1

Задание: Изобразите график зависимости $ln\left(\frac{j_n}{T2}\right)$ от $\frac{1}{T}$. Как используя данный график можно определить работу выхода электрона?

Решение:

Для того чтобы построить график зависимости $ln\left(\frac{j_n}{T2}\right)(\frac{1}{T})$ используем формулу Ричардсона — Дешмана в виде:

\[ln\left(\frac{j_n}{T2}\right)=lnA-\frac{A_v}{kT}\left(1.1\right).\]

Исходя из формулы (1.1) искомый график — прямая линия (рис.1). Пересекая ось ординат, данная прямая отсекает на этой вертикальной оси отрезок равный $lnA$.

Величина A должна быть универсальной постоянной для всех металлов, однако этот результат экспериментом не подтверждается.

Так как на величину A оказывают влияния поверхностные эффекты, помимо этого, у кристалла плотность тока насыщения может отличаться для разных граней.

Рисунок 1.

Ответ: По углу наклона прямой, которая изображена на рис.1, можно определить работу выхода электрона из металла.

Пример 2

Задание: Объясните, как с помощью вакуумного диода показать, что носителями тока через вакуум являются электроны.

Решение:

Вакуумный диод — вакуумная лампа, которая имеет два электрода. Катодом является проволока (нить) из тугоплавкого металла, которую накаляют с помощью электрического тока. Металлический анод обычно, имеет форму цилиндра, окружает катод. Диод включают в электрическую цепь, которая включает последовательно соединенные источник тока, диод и миллиамперметр.

Если цепь замкнуть, то ток через амперметр не идет. Если катод нагреть до определённой температуры, то миллиамперметр покажет наличие тока в цепи. Если полярность батареи источника тока заменить, ток прекратится.

Этот опыт показывает, что носителями тока через вакуум являются частицы с отрицательным зарядом, а именно электроны, так как никаких химических реакций около электродов не наблюдается при прохождении тока.

Источник: https://spravochnick.ru/fizika/mehanizmy_elektroprovodnosti/elektricheskiy_tok_v_vakuume/

Тема лекции

Электрический ток в вакууме

Электрический ток в вакууме

Вакуум — это состояние газа, при котором давление меньше атмосферного. Различают низкий, средний и высокий вакуум.

Для создания высокого вакуума необходимое разрежение, за которого в газе, что остался, средняя длина свободного пробега молекул больше размеров сосуда или расстояния между электродами в сосуде.

Следовательно, если в сосуде создан вакуум, то молекулы в нем почти не сталкиваются между собой и пролетают свободно межэлектродный пространство.

При этом они испытывают столкновения лишь с электродами или со стенками сосуда.

Чтобы в вакууме существовал ток, необходимо поместить в вакуум источник свободных электронов. Наибольшая концентрация свободных электронов в металлах.

Но при комнатной температуре они не могут покинуть металл, потому что их в нем удерживают силы кулоновского притяжения положительных ионов.

Для преодоления этих сил электрону, чтобы покинуть поверхность металла, необходимо затратить определенную энергию, которую называют работой выхода.

Если кинетическая энергия электрона превысит или будет равна работе выхода, то он покинет поверхность металла и станет свободным.

Процесс испускания электронов с поверхности металла называют эмиссией. В зависимости от того, как была передана электронам необходима энергия, различают несколько видов эмиссии. Один из них — термоелектронна эмиссия.

Ø Испускание электронов нагретыми телами называют термоелектронною эмиссией.

Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод непрерывно испускает электроны. Электроны образуют вокруг электрода электронное облако. Электрод при этом заряжается положительно, и под воздействием электрического поля заряженного облака электроны из облака частично возвращаются на электрод.

В равновесном состоянии число электронов, покинувших электрод за секунду, равно числу электронов, которые вернулись на электрод за это время.

2. Электрический ток в вакууме

Для существования тока необходимо выполнение двух условий: наличие свободных заряженных частиц и электрического поля. Для создания этих условий в баллон помещают два электрода (катод и анод) и выкачивают из баллона воздуха. В результате нагрева катода из него вылетают электроны. На катод подают отрицательный потенциал, а на анод — положительный.

Электрический ток в вакууме представляет собой направленный движение электронов, полученных в результате термоэлектронной эмиссии.

3. Вакуумный диод

Современный вакуумный диод состоит из стеклянного или металлокерамического баллона, из которого откачан воздух до давления 10-7 мм рт. ст. В баллон впаяны два электрода, один из которых — катод — имеет вид вертикального металлического цилиндра, изготовленного из вольфрама и покрытого обычно слоем оксидов щелочноземельных металлов.

Внутри катода расположен изолированный проводник, что его нагревает переменный ток. Нагретый катод испускает электроны, достигающие анода. Анод лампы представляет собой круглый или овальный цилиндр, имеющий общую ось с катодом.

Односторонняя проводимость вакуумного диода обусловлена тем, что вследствие нагревания электроны вылетают из горячего катода и движутся до холодного анода. Электроны могут двигаться через диод только от катода к аноду (то есть электрический ток может протекать только в обратном направлении: от анода к катоду).

На рисунке воспроизведен вольт-амперную характеристику вакуумного диода (отрицательное значение напряжения соответствует случаю, когда потенциал катода выше потенциала анода, то есть электрическое поле «пытается» вернуть электроны обратно на катод).

 Вакуумные диоды используют для выпрямления переменного тока. Если поместить между катодом и анодом еще один электрод (сетку), то даже незначительное изменение напряжения между сеткой и катодом существенно влиять на анодный ток. Такая электронная лампа (триод) позволяет усиливать слабые электрические сигналы. Поэтому некоторое время эти лампы были основными элементами электронных устройств.

4. Электронно-лучевая трубка

Электрический ток в вакууме применяли в электронно-лучевой трубке (ЭЛТ), без которой долгое время нельзя было представить телевизор или осциллограф.

На рисунке упрощенно показана конструкция ЭЛТ.

Электронная «пушка» в горловине трубки — катод, который испускает интенсивный пучок электронов. Специальная система цилиндров с отверстиями (1) фокусирует этот пучок, делает его узким. Когда электроны попадают на экран (4), он начинает светиться. Управлять потоком электронов можно с помощью вертикальных (2) или горизонтальных (3) пластин.

Электронам в вакууме можно передать значительную энергию. Электронные пучки можно применять даже для плавки металлов в вакууме.

Источник: https://multiurok.ru/files/tiema-liektsii-eliektrichieskii-tok-v-vakuumie.html

Электрический ток в вакууме. урок. Физика 10 Класс

Электрический ток в вакууме

На этом уроке мы продолжаем изучение протекания токов в различных средах, конкретно, в вакууме. Мы рассмотрим механизм образования свободных зарядов, рассмотрим основные технические приборы, работающие на принципах тока в вакууме: диод и электронно-лучевая трубка. Также укажем основные свойства электронных пучков.

Перед тем, как говорить, по какому механизму распространяется электрический ток в вакууме, необходимо понять, что же это за среда.

Определение. Вакуум – состояние газа, при котором свободный пробег частицы больше размера сосуда. То есть такое состояние, при котором молекула или атом газа пролетает от одной стенки сосуда к другой, не сталкиваясь с другими молекулами или атомами. Существует также понятие глубины вакуума, которое характеризует то малое количество частиц, которое всегда остается в вакууме.

Для существования электрического тока необходимо наличие свободных носителей заряда.

Откуда они берутся в области пространства с очень малым содержанием вещества? Для ответа на этот вопрос необходимо рассмотреть опыт, проведенный американским физиком Томасом Эдисоном (рис. 1).

В ходе эксперимента две пластины помещались в вакуумную камеру и замыкались за ее пределами в цепь с включенным электрометром. После того как одну пластину нагревали, электрометр показывал отклонение от нуля (рис. 2).

Рис. 1. Томас Эдисон (Источник)

Результат опыта объясняется следующим образом: в результате нагревания металл из своей атомной структуры начинает испускать электроны, по аналогии испускания молекул воды при испарении. Разогретый металл окружает электронное облако. Такое явление называется термоэлектронной эмиссией.

Рис. 2. Схема опыта Эдисона

Свойство электронных пучков

В технике очень важное значение имеет использование так называемых электронных пучков.

Определение. Электронный пучок – поток электронов, длина которого много больше его ширины. Получить его довольно просто. Достаточно взять вакуумную трубку, по которой проходит ток, и проделать в аноде, к которому и идут разогнанные электроны, отверстие (так называемая электронная пушка) (рис. 3).

Рис. 3. Электронная пушка

Электронные пучки обладают рядом ключевых свойств:

В результате наличия большой кинетической энергии они имеют тепловое воздействие на материал, в который врезаются. Данное свойство применяется в электронной сварке. Электронная сварка необходима в тех случаях, когда важно сохранение чистоты материалов, например, при сваривании полупроводников.

  • При столкновении с металлами электронные пучки, замедляясь, излучают рентгеновское излучение, применяемое в медицине и технике (рис. 4).

Рис. 4. Снимок, сделанный при помощи рентгеновского излучения (Источник)

  • При попадании электронного пучка на некоторые вещества, называющиеся люминофорами, происходит свечение, что позволяет создавать экраны, помогающие следить за перемещением пучка, конечно же, невидимого невооруженным глазом.
  • Возможность управлять движением пучков с помощью электрических и магнитных полей.

Следует отметить, что температура, при которой можно добиться термоэлектронной эмиссии, не может превышать той температуры, при которой идет разрушение структуры металла.

На первых порах Эдисон использовал следующую конструкцию для получения тока в вакууме. В вакуумную трубку с одной стороны помещался проводник, включенный в цепь, а с другой стороны – положительно заряженный электрод (см. рис. 5):

Рис. 5

В результате прохождения тока по проводнику он начинает нагреваться, эмиссируя электроны, которые притягиваются к положительному электроду. В конце концов, возникает направленное движение электронов, что, собственно, и является электрическим током.

Однако количество таким образом испускаемых электронов слишком мало, что дает слишком малый ток для какого-либо использования. С этой проблемой можно справиться добавлением еще одного электрода. Такой электрод отрицательного потенциала называется электродом косвенного накаливания.

С его использованием количество движущихся электронов в разы увеличивается (рис. 6).

Рис. 6. Использование электрода косвенного накаливания

Стоит отметить, что проводимость тока в вакууме такая же, как и у металлов – электронная. Хотя механизм появления этих свободных электронов совсем иной.

На основе явления термоэлектронной эмиссии был создан прибор под названием вакуумный диод (рис. 7).

Рис. 7. Обозначение вакуумного диода на электрической схеме

Вакуумный диод

Рассмотрим подробнее вакуумный диод. Существует две разновидности диодов: диод с нитью накаливания и анодом и диод с нитью накаливания, анодом и катодом. Первый называется диодом прямого накала, второй – косвенного накала.

В технике применяется как первый, так и второй тип, однако диод прямого накала имеет такой недостаток, что при нагревании сопротивлении нити меняется, что влечет за собой изменение тока через диод.

А так как для некоторых операций с использованием диодов необходим совершенно неизменный ток, то целесообразнее использовать второй тип диодов.

В обоих случаях температура нити накаливания для эффективной эмиссии должна равняться .

Диоды используются для выпрямления переменных токов. Если диод используется для преобразования токов промышленного значения, то он называется кенотроном.

Электрод, расположенный вблизи испускающего электроны элемента, называется катодом (), другой – анодом (). При правильном подключении при увеличении напряжения растет сила тока.

При обратном же подключении ток идти не будет вообще (рис. 8). Этим вакуумные диоды выгодно отличаются от полупроводниковых, в которых при обратном включении ток хоть и минимальный, но есть.

Благодаря этому свойству вакуумные диоды используются для выпрямления переменных токов.

Рис. 8. Вольтамперная характеристика вакуумного диода

Другим прибором, созданным на основе процессов протекания тока в вакууме, является электрический триод (рис. 9). Его конструкция отличается от диодной наличием третьего электрода, называемого сеткой. На принципах тока в вакууме основан также такой прибор, как электронно-лучевая трубка, составляющий основную часть таких приборов, как осциллограф и ламповые телевизоры.

Рис. 9. Схема вакуумного триода

Электронно-лучевая трубка

Как уже было сказано выше, на основе свойств распространения тока в вакууме было сконструировано такое важное устройство, как электронно-лучевая трубка.

В основе своей работы она использует свойства электронных пучков. Рассмотрим строение этого прибора.

Электронно-лучевая трубка состоит из вакуумной колбы, имеющей расширение, электронной пушки, двух катодов и двух взаимно перпендикулярных пар электродов (рис. 10).

Рис. 10. Строение электронно-лучевой трубки

Принцип работы следующий: вылетевшие вследствие термоэлектронной эмиссии из пушки электроны разгоняются благодаря положительному потенциалу на анодах.

Затем, подавая желаемое напряжение на пары управляющих электродов, мы можем отклонять электронный пучок, как нам хочется, по горизонтали и по вертикали.

После чего направленный пучок падает на люминофорный экран, что позволяет нам видеть на нем изображение траектории пучка.

Электронно-лучевая трубка используется в приборе под названием осциллограф (рис. 11), предназначенном для исследования электрических сигналов, и в кинескопических телевизорах за тем лишь исключением, что там электронные пучки управляются магнитными полями.

Рис. 11. Осциллограф (Источник)

На следующем уроке мы разберем прохождение электрического тока в жидкостях.           

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
  3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. – М.: 2010.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Physics.kgsu.ru (Источник).
  2. Cathedral.narod.ru (Источник).

Домашнее задание

  1. Что такое электронная эмиссия?
  2. Какие есть способы управления электронными пучками?
  3. Как зависит проводимость полупроводника от температуры?
  4. Для чего используется электрод косвенного накала?
  5. *В чем основное свойство вакуумного диода? Чем оно обусловлено?

Источник: https://interneturok.ru/lesson/physics/10-klass/elektricheskiy-tok-v-razlichnyh-sredah/elektricheskiy-tok-v-vakuume

Booksm
Добавить комментарий