Электрический диполь

электричество и магнетизм

Электрический диполь

Плохо заряду, когда он один. Горе одному, один не воин. Каждый дюжий ему господин, И даже слабые, если двое.(почти В.В.Маяковский)

Простейшей системой точечных зарядов является диполь (от лат. «двойной полюс»).

def: Диполем называются два равных по величине, но противоположных по знаку точечных заряда, сдвинутых друг относительно друга на некоторое расстояние (см. рис.8.1).

def: Электрическим дипольным моментом называется величина, определяемая как    (8.1)

Следует отметить, что дипольный момент не зависит от положения диполя в пространстве, так как вектор  остается неизменным при любом выборе тела отсчета. Поэтому без ограничения общности в дальнейшем начало координат будем выбирать в центре диполя, если другое не оговорено особо.

2. Поле диполя в дальней зоне

Очевидно, что напряженность в произвольной точке пространства М (см. рис.8.2) по принципу суперпозиции равна

   (8.2)

где , а . После подстановки имеем

   (8.3)

Подробнее рассмотрим знаменатели, считая что l>>r и a — угол между и . При разложении в ряд пренебрегаем последним членом.

Аналогично поступаем со вторым знаменателем. При приведении к общему знаменателю в (8.3) ряд слагаемых в числителе взаимно уничтожаются, а в знаменателе пренебрегаем квадратичным членом. В итоге получаем

   (8.5)

Окончательно, учитывая, что , имеем

    (8.6)

Это напряженность электрического поля диполя в дальней зоне, т.е. в точках пространства, где r>>l.

3. Частные случаи

Легко понять, что при выборе осей так, как показано на рис.8.3, проекции напряженности и ее модуль равны соответственно

Видно, что напряженность убывает по закону кубов (а не квадратов).

точкауголнапряженность
A,Ca=0;a=p
B,Da=p/2

В характерных точках, указанных на рисунке 5.3 выражения для напряженности даны в таблице.

Легко определить угол между напряженностью и радиус вектором (см. рис.8.4)

Используя тригонометрическую формулу , получаем

   (8.14)

причем смысл имеет верхний знак.

4. Диполь во внешнем однородном поле

На диполь действует пара сил, сумма которых равна 0, то есть центр диполя остается на месте или движется равномерно и прямолинейно (вспомните механику!). Однако момент этой пары сил (рис.8.5) отличен от нуля

   (8.15)

и стремится развернуть диполь по полю, причем после поворота диполь окажется в положении устойчивого равновесия. Диполь может быть приведен в равновесие и поворотом против часовой стрелки (см. рис.8.5), но в этом случае равновесие будет неустойчивым.

5. Векторное произведение (математическое отступление)

Опыт показывает, что студентам время от времени нужно напоминать, что такое векторное произведение двух векторов.

def:Векторным произведением двух векторов и называется вектор, модуль которого равен absina, где a — угол между векторами, а направление определяется правилом правого винта (буравчика).

Правило правого винта заключается в следующем: винт с правой (обычной) резьбой нужно вращать от первого вектора ко второму. Тогда поступательное движение винта покажет направление векторного произведения.

Полезно запомнить, что векторное произведение всегда перпендикулярно плоскости, образованной векторами – сомножителями. Модуль векторного произведения численно равен площади параллелограмма, построенного на векторах-сомножителях.

Направление векторного произведения зависит от порядка сомножителей.

6. Диполь во внешнем неоднородном поле

Пусть теперь поле неоднородно в пространстве.

Если считать, что в области диполя поле меняется очень слабо, то формула для момента остается прежней (см.8.15), и диполь также стремится развернуться по полю (рис.8.6).

Не строго получим выражение для силы, действующей на диполь.

   (8.17)

Опять будем считать, что диполь очень маленький (точечный), то есть заряды смещены друг относительно друга на бесконечно малый вектор . Это означает, что значения напряженности поля в точках нахождения зарядов бесконечно мало отличаются друг от друга, поэтому , где можно записать как полный дифференциал

где — уже упоминавшийся ранее (см. лек.№7 п.16) набла-оператор (оператор Гамильтона). Обратите внимание на расстановку знаков. На вектор напряженности действует весь оператор, стоящий в скобках , а не только оператор , хотя бы потому, что никто не знает, что такое градиент векторного поля (математики такой операции еще не определили).

Таким образом, (8.17) принимает вид

   (8.19)

Еще немного поиграем с формулами векторного анализа. Нам известно (а вам?!), что

   (8.20)

Второе и четвертое слагаемые равны нулю, т.к. дипольный момент не зависит от координат, как это отмечалось в пункте 1. Третье слагаемое в электростатике также обращается в нуль по теореме о циркуляции (6.15). Тогда силу, действующую на диполь можно записать в виде

   (8.21)

Вспомним, что в механике между силой и потенциальной энергией Wp есть связь . Тогда очевидно, что в электростатическом поле диполь обладает потенциальной энергией

   (8.20)

Очевидно, что потенциальная энергия минимальна, если дипольный момент и поле сонаправлены, то есть, диполь развернут по полю.

Из (8.19) или (8.21) ясно, что диполь втягивается в область более сильного поля. Проиллюстрируем данный вывод на следующих примерах.

Пусть диполь уже развернулся вдоль поля (см. рис.8.7), то есть . Тогда

,

причем px>0,

Fx

Источник: https://tsput.ru/res/fizika/ELECTRO_DREAM/lection_08.html

3.2. Электрический диполь

Электрический диполь

которая идет на увеличение его потенциальной энергии. Отсюда получаем потенциальную энергию диполя в электрическом поле 

откуда

или

(3.8)

если положить const = 0. 

Из рисунка видно, что внешнее электрическое поле стремится повернуть диполь таким образом, чтобы вектор его электрического момента р совпал по направлению с вектором Е. В этом случае  , а, следовательно, и М = 0.

С другой стороны, при  потенциальная энергия диполя во внешнем поле принимает минимальное значение  , что соответствует положению устойчивого равновесия.

При отклонении диполя от этого положения снова возникает механический момент, который возвращает диполь в первоначальное положение. Другое положение равновесия, когда дипольный момент направлен против поля  является неустойчивым.

Потенциальная энергия в этом случае принимает максимальное значение  и при небольших отклонениях от такого положения возникающие силы не возвращают диполь назад, а еще больше отклоняют его. 

На рис. 3.11 показан опыт, иллюстрирующий возникновение момента электрических сил, действующих на диэлектрик в электрическом поле.

На удлиненный диэлектрический образец, расположенный под некоторым углом к силовым линиям электростатического поля, действует момент сил, стремящийся развернуть этот образец вдоль поля.

Диэлектрическая палочка, подвешенная за середину внутри плоского конденсатора, разворачивается перпендикулярно его пластинам после подачи на них высокого напряжения от электростатической машины. Появление вращающего момента обусловлено взаимодействием поляризовавшейся палочки с электрическим полем конденсатора.

Рис. 3.11. Момент электрических сил, действующих на диэлектрик в электрическом поле 

В случае неоднородного поля на рассматриваемый диполь будет действовать еще и равнодействующая сила Fpaвн, стремящаяся его сдвинуть. Мы рассмотрим здесь частный случай. Направим ось х вдоль поля Е.

Пусть диполь под действием поля уже повернулся вдоль силовой линии, так что отрицательный заряд находится в точке с координатой x, а положительный заряд расположен в точке с координатой х + l. Представим себе, что величина напряженности поля зависит от координаты х.

Тогда равнодействующая сила Fpaвн  равна

(3.9)

Такой же результат может быть получен из общего соотношения

где энергия П определена в (3.8). Если Е увеличивается с ростом x, то

и проекция   равнодействующей силы положительна. Это значит, что она стремиться втянуть диполь в область, где напряженность поля больше. Этим объясняется известный эффект, когда нейтральные кусочки бумаги притягиваются к наэлектризованной расческе. В плоском конденсаторе с однородным полем они остались бы неподвижными. 

Рассмотрим несколько опытов, иллюстрирующих возникновение силы, действующей на диэлектрик, помещенный в неоднородное электрическое поле. 

На рис. 3.12 показано втягивание диэлектрика в пространство между обкладками плоского конденсатора. В неоднородном электростатическом поле на диэлектрик действуют силы, втягивающие его в область более сильного поля.

Рис. 3.12. Втягивание жидкого диэлектрика в плоский конденсатор 

Это демонстрируется при помощи прозрачного сосуда, в который помещен плоский конденсатор, и налито некоторое количество жидкого диэлектрика — керосина (рис.3.13). Конденсатор присоединен к высоковольтному источнику питания — электростатической машине.

При ее работе на нижнем краю конденсатора, в области неоднородного поля, на керосин действует сила, втягивающая его в пространство между пластинами. Поэтому уровень керосина внутри конденсатора устанавливается выше, чем снаружи.

После выключения поля уровень керосина между пластинами падает до его уровня в сосуде. 

Рис. 3.13. Втягивание керосина в пространство между обкладками плоского конденсатора 

3.1. Эксперимент по втягиванию жидкого диэлектрика в конденсатор.

В реальных веществах нечасто встречаются диполи, образованные только двумя зарядами. Обычно мы имеем дело с более сложными системами. Но понятие электрического дипольного момента применимо и к системам со многими зарядами. В этом случае дипольный момент  определяется как

(3.10)

где , — величина заряда с номером i и радиус-вектор, определяющий его местоположение, соответственно. В случае двух зарядов  мы приходим к прежнему выражению

Пусть наша система зарядов электрически нейтральна. В ней есть положительные заряды, величины которых и местоположения мы обозначим индексом «+». Индексом «–» мы снабдим абсолютные величины отрицательных зарядов и их радиус-векторы. Тогда выражение (3.10) может быть записано в виде

(3.11)

В (3.11) в первом слагаемом суммирование ведется по всем положительным зарядам, а во втором — по всем отрицательным зарядам системы.

Электрическая нейтральность системы означает равенство полного положительного заряда и суммы абсолютных величин всех отрицательных зарядов

(3.12)

Введем теперь понятие «центр зарядов» — положительных R+ и отрицательных R

(3.13)

Выражения (3.13) аналогичны формулам для центра масс в механике, и потому мы назвали их центрами положительных и отрицательных зарядов, соответственно. С этими обозначениями и с учетом соотношения (3.12) мы записываем электрический дипольный момент (3.11) системы зарядов в виде

(3.14)

где l-вектор, проведенный из центра отрицательных зарядов в центр положительных зарядов. Смысл нашего упражнения заключается в демонстрации, что любую электрически нейтральную систему зарядов можно представить как некий эквивалентный диполь.

Дополнительная информация 

 http://webmath.exponenta.ru/dnu/lc/age/pyartli1/node9.htm —  Векторное произведение.

Источник: https://online.mephi.ru/courses/physics/electricity/data/course/3/3.2.html

Электрический диполь

Электрический диполь

Определение

Электрическим диполем называется система из двух точечных зарядов, величина которых одинакова, но противоположна по знаку, при чем, эти точечные заряды разнесены на небольшое расстояние друг от друга. Вектор, соединяющий отрицательный заряд с положительным (направление от минуса к плюсу), называется плечом диполя.

Тогда векторная величина, равная:

\[\overrightarrow{p_e}=q\overrightarrow{l\ }\left(1\right),\]

называется моментом диполя (электрическим моментом диполя). В формуле (1) $q$ — абсолютное значение каждого из зарядов диполя.

Электрическое поле диполя складывается из напряжённостей зарядов, которые составляют диполь. Так как плечо диполя мало, поэтому можно считать, что оно много меньше, чем расстояние до точек, в которых рассчитывается напряженность поля. Найдем потенциал диполя. В точке А (рис.1) формула для потенциала будет иметь вид:

\[{\varphi }_A=\frac{q}{4\pi {\varepsilon }_0\varepsilon }\left(\frac{1}{r_+}-\frac{1}{r_-}\right)\left(2\right).\]

Рис. 1

Так как $l\ll r$, можно считать, что:

\[r_—r_+\approx lcos\theta ,\ r_-\cdot r_+\approx r2\left(3\right).\]

При этом местоположение точки A можно характеризовать вектором$\overrightarrow{\ r}$ с началом в любой точке диполя, ввиду малых геометрических размеров диполя. В таком случае формулу (2) можно записать в виде:

\[\varphi \left(r\right)=\frac{1}{4\pi {\varepsilon }_0\varepsilon }\frac{\overrightarrow{p_e}\cdot \overrightarrow{r}}{r3}\left(4\right),\]

где $qlcos\theta =\frac{\overrightarrow{p_e}\cdot \overrightarrow{r}}{r}.$ Зная связь напряженности поля и потенциала:

\[\overrightarrow{E}=-grad\varphi \ (5)\]

запишем формулу для напряженности поля диполя, которая будет иметь вид:

\[\overrightarrow{E}=\frac{1}{4\pi {\varepsilon }_0\varepsilon }\left(\frac{3\left({\overrightarrow{p}}_e\cdot \overrightarrow{r}\right)\overrightarrow{r}}{r5}-\frac{\overrightarrow{p_e}}{r3}\right)\left(6\right).\]

Согласно формуле (6) напряженность поля диполя убывает быстрее, чем напряженность кулоновского поля одиночного заряда, пропорционально третьей степени расстояния. Силовые линии электростатического поля около диполя изображены на рис. 2.

Рис. 2

Модуль вектора сопряженности

Если сферическую систему координат разместить так, чтобы ее центр совпал с серединой плеча диполя, а полярная ось была параллельна $\overrightarrow{p_e}$ (рис.3), то составляющие вектора напряженности будут иметь вид:

\[E_r=\frac{1}{2\pi {\varepsilon }_0\varepsilon }\frac{p_ecos \vartheta}{r3},E_\vartheta=\frac{1}{4\pi {\varepsilon }_0\varepsilon }\frac{p_esin \vartheta}{r3},E_{\varphi }=0.\ \left(7\right).\]

В таком случае модуль вектора напряженности равен:

\[E=\frac{1}{4\pi {\varepsilon }_0\varepsilon }\frac{p_e}{r3}\sqrt{3{cos}2\vartheta+1}\left(8\right).\]

Рис. 3

Вычисление момента сил

В однородном поле сила, которая действует на диполь со стороны поля ($\overrightarrow{F}$), равна нулю, так как к зарядам приложены одинаковые по модулю и противоположные по направлению силы:

\[\overrightarrow{F}={\overrightarrow{F}}_++{\overrightarrow{F}}_-=0\left(9\right),\]

где ${\overrightarrow{F}}_+$- сила, действующая на положительный заряд диполя, ${\overrightarrow{F}}$ — сила, действующая на отрицательный заряд диполя.

Момент этих сил равен:

\[\overrightarrow{M}=\overrightarrow{p_e}\times \overrightarrow{E}\left(10\right).\]

Момент сил $\overrightarrow{M}$ стремится повернуть ось диполя в направлении поля $\overrightarrow{E}.$ Существует два положения равновесия диполя: диполь параллелен полю (устойчивое положение) и антипараллелен (неустойчивое положение).

Если поле не однородно, то сила (сумма сил действующих на положительный и отрицательный заряд) не равна нулю.$\ \overrightarrow{F}={\overrightarrow{F}}_++{\overrightarrow{F}}_-e 0$. В этом случае сила равна:

\[\overrightarrow{F}=q\left({\overrightarrow{E}}_+-{\overrightarrow{E}}_-\right)\left(11\right).\]

В том случае, если мы имеем дело с точечным диполем (плечо диполя очень мало), то сила, действующая на диполь, может быть записана как:

\[\overrightarrow{F}=p_{ex}\frac{\partial \overrightarrow{E}}{?x}+p_{ey}\frac{\partial \overrightarrow{E}}{\partial y}+p_{ez}\frac{\partial \overrightarrow{E}}{\partial z}\left(12\right).\]

или, что то же самое, но короче:

\[\overrightarrow{F}=\left(\overrightarrow{p}\overrightarrow{abla }\right)\overrightarrow{E}\left(13\right).\]

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Пример 1

Задание: Ответьте на вопрос: может ли точечный заряд двигаться с постоянной скоростью вокруг неподвижного точечного диполя?

Ответ: Может, причем, расстояние заряда от диполя может быть любым. Плоскость круговой орбиты движения точечного заряда будет перпендикулярна оси диполя. Угол между направлением дипольного момента ($\theta $) и радиус — вектором, который проведен к точечному заряду определяется выражением: cos ($\theta $)=$\pm \sqrt{3}$. Минус относится к положительному заряду.

Пример 2

Задание: Чему равна сила взаимодействия точечного заряда и точечного диполя? Дипольный момент диполя равен $p_e$. Расстояние между зарядом и диполем равно r, дипольный момент направлен вдоль соединяющей их прямой (рис.4).

Рис. 4

Напряженность поля, которое создает диполь в точке А (где помещен заряд q) равна:

\[E=q\left(\frac{1}{{r_2}2}-\frac{1}{{r_1}2}\right)\left(2.1\right).\]

где $r_2$ — расстояние от точки А до положительного конца диполя, $r_1$ — расстояние до отрицательного конца, но мы считаем диполь точечный (плечо диполя много меньше чем расстояние до точки А ($l\ll r$)), тогда можно (2.1) преобразовать в:

\[E=q\left(\frac{1}{{r_2}2}-\frac{1}{{r_1}2}\right)\approx q\frac{d}{dr}\left(\frac{1}{r2}\right)\left(r_2-r_1\right)={\frac{2ql}{r3}=\frac{2p_e}{r3}\left(2.2\right).}\]

Тогда силу с которой поле диполя действует на заряд, который помещен в точку А найдем как:

\[F=Q\cdot E\ \left(2.3\right).\]

В результате получаем:

\[F=Q\frac{2p_e}{r3}.\]

Ответ: Сила взаимодействия точечного заряда и точечного диполя равна $F=Q\frac{2p_e}{r3}.$

Источник: https://spravochnick.ru/fizika/elektrostatika/elektricheskiy_dipol/

Электростатический диполь. Электростатическое поле. Напряженность

Электрический диполь

Электрическое поле, которое окружает заряд, это реальность, независящая от нашего желания что-либо изменить и как-то повлиять на это. Отсюда можно сделать вывод, что электрическое поле является одной из форм существования материи, так же как и вещество.

Электрическое поле зарядов, находящихся в состоянии покоя, называют электростатическим.

Чтобы обнаружить электростатическое поле определенного заряда нужно внести в его поле другой заряд, на который будет действовать определенная сила в соответствии с законом Кулона.

Однако без наличия второго заряда электростатическое поле первого заряда существует, но никак себя не проявляет.

Напряженностью Е характеризуют электростатическое поле. Напряженность в некоторой точке электрического поля – физическая величина, которая равна силе, действующей на помещенный в определенную точку поля единичный положительный покоящийся заряд, и направленная в сторону действия силы.

Если в электрическое поле, создаваемое  зарядом q, внести «пробный» положительный точечный заряд qпр, то по закону Кулона на него будет действовать сила:

Если в одну точку поля помещать различные пробные заряды q/пр,  q//пр и так далее, то на каждый из них будут действовать различные силы, пропорциональные величине заряда. Отношение F/qпр для всех зарядов, вносимых в поле, будет идентичным, а также будет зависеть лишь от q и r, определяющих электрическое поле в данной точке. Данную величину можно выразить формулой:

Если предположить, что qпр = 1, то E = F. Отсюда делаем вывод, что напряженность электрического поля является его силовой характеристикой. Из формулы (2) с учетом выражения кулоновской силы (1) следует:

Из формулы (2) видно, что за единицу напряженности принимается напряженность в определенной точке поля, где на единицу заряда будет действовать единица силы. Поэтому в системе СГС единицей напряженности является дин/СГСq, а в системе СИ будет Н/Кл. Соотношение между приведенными единицами называют абсолютной электростатической единицей напряженности (СГСЕ):

Вектор напряженности направлен от заряда вдоль радиуса при образующем поле положительном заряде q+, а при отрицательном – q – по направлению к заряду вдоль радиуса.

Если электрическое поле образовано несколькими зарядами, то силы, которые будут действовать на пробный заряд, складываются по правилу сложения векторов. Поэтому напряженность системы, состоящей из нескольких зарядов, в данной точке поля будет равна векторной сумме напряженностей каждого заряда в отдельности:

Данное явление носит название принцип суперпозиции (наложения) электрических полей.

Напряженность в любой точке электрического поля двух точечных зарядов – q2 и +q1 можно найти использовав принцип суперпозиции:

По правилу параллелограмма будет происходить сложение векторов Е1 и Е2. Направление результирующего вектора Е определяется построением, а его абсолютная величина может быть вычислена с использованием формулы ниже:

Где α – угол между векторами Е1 и Е2.

Давайте рассмотрим электрическое поле, которое создает диполь. Электрический диполь – это система равных по величине (q = q1 = q2), но противоположных по знаку зарядов, расстояние между которыми очень мало, если сравнивать с расстоянием до рассматриваемых точек электрического поля.

Электрический дипольный момент p, являющийся основной характеристикой диполя и определяемый как вектор, направленный от отрицательного заряда к положительному, и равный произведению плеча диполя l на заряд q:

Также вектором является плечо диполя l, направленным от отрицательного заряда к положительному, и определяет расстояние между зарядами. Линия, которая проходит через оба заряда, носит название – ось диполя.

Давайте определим напряженность электрического поля в точке, которая лежит на оси диполя по середине (рисунок ниже а)):

В точке В напряженность Е будет равна векторной сумме напряженностей Е/ и Е//, которые создаются положительными и отрицательными зарядами но отдельности. Между зарядами –q и +q векторы напряженностей Е/ и Е// направлены в одну сторону, поэтому по абсолютной величине результирующая напряженность Е будет равна их сумме.

Если же нам необходимо найти Е в точке A, лежащей на продолжении оси диполя, то в разные стороны будут направлены вектора Е/ и Е//, соответственно по абсолютной величине результирующая напряженность будет равна их разности:

Где r – расстояние между точкой, которая лежит на оси диполя и в которой происходит определение напряженности, и средней точкой диполя.

В случае r>>l, величиной (l/2) в знаменателе можно пренебречь, тогда получим следующее соотношение:

Где p – момент электрический диполя.

Данная формула в системе СГС примет вид:

Теперь нужно вычислить напряженность электрического поля в точке С (рисунок выше б)), лежащей на перпендикуляре, восстановленном из средней точки диполя.

Так как r1 = r2, то будет иметь место равенство:

В точке С вектор результирующей напряженности по абсолютной величине будет равен:

Так как r>>l, то можно считать r1 ≈ r, тогда представленную выше формулу можно записать в другом виде:

Напряженность диполя в произвольной точке можно определить по формуле:

Где α – угол между плечом диполя l и радиус-вектором r, r – расстояние от точки, в которой определяется напряженность поля, до центра диполя, р – электрический момент диполя.

Пример

На расстоянии R = 0,06 м друг от друга находятся два одинаковых точечных заряда q1 = q2 = 10-6 Кл (рисунок ниже):

Необходимо определить напряженность электрического поля в точке А, которая расположена на перпендикуляре, восстановленном в центре отрезка, который соединяет заряды, на расстоянии h = 4 см от этого отрезка. Также нужно определить напряженность и в точке В, находящейся на середине отрезка,  который соединяет заряды.

Решение

По принципу суперпозиции (наложением полей) определяется напряженность поля Е. Таким образом, векторной (геометрической) суммой определяется Е, создаваемых каждым зарядом в отдельности: Е = Е1 + Е2.

Напряженность электрического поля первого точечного заряда равна:

Где q1 и q2 – заряды, образующие электрическое поле; r – расстояние от точки, в которой вычисляется напряженность, до заряда; ε0 – электрическая постоянная; ε – относительная диэлектрическая проницаемость среды.

Для определения напряженности в точке В сначала нужно построить векторы напряженности электрических полей от каждого заряда. Поскольку заряды положительны, то векторы Е/ и Е// будут направлены от точки В в разные стороны. По условию q1 = q2:

Это значит, что в средине отрезка напряженность поля равна нулю.

В точке А необходимо произвести геометрическое сложение векторов Е1 и Е2. В точке А напряженность будет равна:

Источник: https://elenergi.ru/elektrostaticheskij-dipol-elektrostaticheskoe-pole-napryazhennost.html

Booksm
Добавить комментарий