Что такое сила трения, формулы

Сила трения

Что такое сила трения, формулы
В задачах классической механики рассматриваются три основных вида сил, один из которых – силы трения. Они могут нести вред человеку, но и польза от них есть.

Чтобы использовать их с толком, либо уменьшать ущерб, наносимый ими, необходимо понимать их природу и уметь находить.

Силы трения, причина которых кроется в том, что любая поверхность на микроуровне неровна, действуют на движущиеся и покоящиеся тела.

Они могу возникать между твердыми телами, между твердыми и газообразными или жидкими.

Направление сил трения противоположно движению тела (силам, которые движут тело) и лежит в плоскости соприкосновения с поверхностью.

По тому, какая поверхность (со смазкой или без), силы трения делят на сухие и не сухие виды. К первым относят трение покоя (сцепления), скольжения и качения. К не сухим – жидкостное (вязкое).

С помощью подручных средств легко провести опыт. Возьмем любой предмет (например, книгу), положим его на стол и потянем. Если тянуть слабо, книга не сдвинется, ибо на нее действует сила трения покоя.

Когда прикладываемся сила станет больше, сцепление также увеличится.

Но у него есть максимальное (предельное) значение, и если тянущая сила превысит это значение, тело начнет движение, а покой сменится скольжением.

Рис. 1. Измерение силы трения при помощи динамометра.

Если выстраивать строгую теорию трения скольжения, то придется учитывать ее зависимость от скорости. Но большая часть относительно простых задач решаются в приближении, когда силу трения скольжения считают равной максимальной силе сцепления.

На практике трение часто наносит ущерб. Например, оно вызывают истирание деталей. Эту проблему решают либо добавлением смазки, либо подшипниками. Во втором случае скольжение заменяется качением.

Рис. 2. Возникновение силы трения качения.

При движении в газообразной или жидкой среде возникает вязкое (жидкостное) трение, которое также называются сопротивлением среды. Оно слабее сухого трения, а главная его особенность в том, что оно зависит от скорости. В случае равенства последней нулю, сопротивление также обратится в нуль.

Из экспериментов известно, что сила сцепления $\vec F_{тр} = – \vec F$, где F – внешняя сила. Максимальное сцепление пропорционально силе нормальной реакции опоры, умноженной на безразмерный коэффициент $\mu$, который определяется характером поверхности трения.

$$F_{тр}= \mu N$$ – (1) формула силы трения покоя

В случае, если тело находится на наклонной поверхности, проекция силы нормальной реакции опоры на ось Оу равна: $N = mgsin \varphi$. И тогда модуль сцепления равен: $F_{тр}= \mu mgsin \varphi$ – (2).

Из вышеприведенной формулы следует, что минимальной сила трения становится, когда угол максимально близок к прямому.

Рис. 3. Сила сцепления на наклонной поверхности.

Силу трения скольжения считают приблизительно равной предельному сцеплению, то есть находится она по формулам (1) и (2). Силой трения качения же на практике часто пренебрегают. При необходимости учета ее влияния пользуются следующей формулой:

$F_{тр} = {\mu \over R}N$,
где R – радиус катящегося (качающегося) тела, а $\mu$ – коэффициент, имеющий размерность радиуса.

Для силы вязкого трения, когда скорости невелики, формула для нахождения записывается так:

$F_{тр1} = k_1v$,
где $k_1$ – коэффициент жидкостного трения.

Когда скорости достаточно велики, зависимость меняется на квадратичную, и ее определение производится по формуле:

$$F_{тр2}=k_2v2$$,
где $k_2$ – коэффициент жидкостного трения при больших скоростях.

  • Кирпич скатывается по деревянной поверхности, которая наклонена к горизонтали под углом 45 градусов. Масса кирпича – 200 грамм, коэффициент трения – 0,5. С каким ускорением он движется?

Решение первой задачи

Схема решения этой задачи та же, по которой решаются большинство задач на основное уравнение динамики.

Ось Оy проведем через вектор силы нормальной реакции опоры, Ось Ох – через вектор ускорения кирпича. Запишем второй закон Ньютона в векторной форме:

$$m \vec a = \vec F_{тр} + m \vec g + \vec N$$

И в проекциях на оси:

Ox: $ma = mgcos \varphi – \mu N$

Oy: $N=mgsin \varphi$

Учитывая уравнение на оси Оу запишем:

$$ma = mgcos \varphi – \mu mgcos \varphi = mg(cos \varphi – \mu sin \varphi)$$

$$a = g(cos \varphi – \mu sin \varphi) = 3,5 м/c$$

  • Человек массой 100 кг совершил прыжок с парашютом. Какова установившаяся скорость его падения без парашюта и с раскрытым парашютом? Коэффициент сопротивления для раскрытого парашюта считать равным $k_2$ = 520 г/cм, без парашюта – 5 г/см

Решение второй задачи

Условие, при котором человек будет падать с одной и той же скорость, найдется из условия равенства силы сопротивления и силы тяжести:

$$mg = k_2v2$$

Тогда:

$$v_1 = \sqrt{mg \over k_1} = 14,14 м/с$$

$$v_2 = \sqrt{mg \over k_2} = 1,38 м/c$$

В ходе урока выяснили, как возникают силы трения, установили закон действия этих сил. После чего разделили силы трения на два вида – силы сухого трения и силы жидкостного трения, а также рассмотрели формулы, по которым производится их расчет. В закрепление урока разобрали две несложные задачи.

Средняя оценка: 4.7. Всего получено оценок: 247.

Источник: https://obrazovaka.ru/fizika/sila-treniya-formula.html

Сила трения, виды трения с формулами, коэффициент трения с задачей и ее решением

Что такое сила трения, формулы

В статье вы узнаете что такое сила трения, формулы для силы трения. Что такое трение скольжения, и когда оно появляется. Также коэффициент трения скольжения с примером и его решением.

Сила трения — это сила, появляющаяся при соприкосновении объектов и мешающая их движению относительно плоскости.

Сила трения представляет собой пассивную силу, то есть возникает, когда силы, параллельные земле, начинают действовать на соприкасающиеся тела. Рассмотрим случай, когда мы перемещаем гардероб (рис. 1) Q — масса тела, равна давлению (N), поскольку тело находится на плоской поверхности, Fr — сила реакции опоры.

Рис.1 Рис. 2 наклонный сегмент — статическое трение, сегмент параллельный оси F — динамическое трение

Чтобы человек сдвинул комод, ему нужно оказывать воздействие на него с такой силой F, которая будет выше силы трения T. Это связано с тем, что в тот момент, когда человек прикладывал силу F, возникала сила трения T, равная силе F, но всегда направленная на ее возврат F = T.

 Предположим, что человек увеличивает силу F, прилагаемой к шкафу (но так, чтобы шкаф все еще оставался в покое), тогда сила трения также увеличивается, и равенство F = T все равно будет выполнено. Сила трения, которая влияет на неподвижное тело, называется статическим трением или трением покоя.

 Теперь давайте посмотрим на тот момент, когда мужчина набрал такую силу, что тело начало двигаться. Статическая сила трения теперь достигла максимального значения и появилась новая сила — динамическое трение или трение скольжения, к которому мы вернемся позже. График (рис.

2) показывает, как значение силы трения Т изменяется в зависимости от приложенной силы F.

Статическая сила трения зависит от типа подложки (или фактически типа контактирующих поверхностей) и силы давления (на ровной поверхности она равна весу, N = Q, или наклон другой).

 Формула для максимального статического трения, то есть значение силы трения, после которой тело начнет двигаться, имеет вид: Tmax = f0*N, где f0 — коэффициент статического трения.

Когда сила F превышает значение Tmax, движению тела всегда противодействует меньшее трение, имеющее постоянное значение, независимо от скорости тела — трение скольжения (динамическое трение). Формула, выражающая ее значение, аналогична формуле статического трения: T = f*N, но f— это коэффициент динамического трения, обычно меньше коэффициента статического трения.

Мы понимаем, что видео куда проще воспринимать, поэтому мы оставим видео ниже на тему: «Сила трения и трение скольжения«

Трение скольжения

Рассмотрим, какие силы сопровождают тело, расположенное на наклонной плоскости, с высотой h, длиной равной l, длиной основания x и углом наклона a(альфа), когда тело начинает скользить вниз и почему?

Тело, расположенное на наклонной плоскости, действует с силой тяжести Q, вектор которой направлен перпендикулярно земле.

 Разобьем вектор силы Q на составляющие: 
— сила давления N, всегда направленная перпендикулярно поверхности равновесия
— сила, вызывающая скольжение тела Fs, вектор которого параллелен поверхности наклона.

Кроме того, все еще существуют силы FR — сила реакции опоры, которая уравновешивает силу давления N и силу трения, Fs равна ей, если тело не соскальзывает равномерно.

Угол, который создает силу давления N и вес Q, всегда совпадает с углом наклона (потому что треугольник x, h, l подобен треугольнику N, Fs, Q, поэтому, имея вес и наклон угла наклона, можно рассчитать каждую силу. И так: 
sin a = Fs / Q, или Fs = Q*sin a
cos a = N / Q, или N = Q*cos a

Кроме того, пропорции верны: 
N / Q = x / l, из теоремы Пифагора:

, поэтому 

У нас есть еще одна сила — сила трения. Если тело находится в состоянии покоя, сила трения равна силе скольжения. Благодаря этому мы можем рассчитать коэффициенты статического трения, используя равенства.

 Для этого разместите тело как можно более равномерно с наибольшим углом наклона, но чтобы тело не могло двигаться! Если Fs = Тмакс (Тмакс максимальное значение статического трения), мы также знаем , что: 
Tмакс = F0, то: 
Fs = F0 , и таким образом мы получаем 
F0 = Fs / N

Из полученных шаблонов получаем: 
f0= (Q*sin a) / (Q*cos a), которая после преобразования дает: 
f0 = tg a

Коэффициент трения

Оказывается, что в типичных ситуациях отношение трения скольжения к давлению предмета на плоскость является постоянным. Его значение называется коэффициентом трения.

f — коэффициент трения (величина) 
T — сила трения скольжения (В системе СИ в ньютонах) 
N — сила давления (В системе СИ в ньютонах)

Мы имеем дело со случаем статического трения, когда мы начинаем перемещать (удаляться от) контактирующие поверхности различных тел. Напротив, динамическое трение происходит уже во время движения. Поскольку перемещать тело с места обычно труднее, чем поддерживать его скорость позже, в большинстве случаев статическое трение больше, чем динамическое.

Разница между коэффициентом статического трения и динамическим коэффициентом может быть различной — она ​​очень велика в случае заносов на замороженных санях и мала для гладких и твердых поверхностей. Формула для значения коэффициента трения одинакова для обоих типов.

Пример расчета коэффициента трения скольжения

Человек двигается с постоянной скоростью и тащит мешок весом 50кг, с приложенной силой в 100Н. Каков коэффициент трения в этом случае?

Решение:
Конечно, мы имеем дело с динамическим трением, потому что говорится о том, чтобы «тянуть» сумку, а не перемещать ее.

Для расчета коэффициента трения необходимо ввести оба значения с правой стороны в формулу:

задания прямо указывает на то, что
Т = 100 Н

Теперь знаменатель — акцент. Давление на блок исходит от земли и направлено вверх (пол держит его). Давление против силы действующего блока, потому что он должен уравновесить эту силу. Поэтому значения давления и силы тяжести одинаковы. Если значение силы давления определяется N, а значение силы трения P, то мы можем написать:

N = P = m*g

Итак, мы имеем:

В основном данные (приблизительное значение g составляет 10 м / с 2 ):

В нашем случае коэффициент динамического трения равен 0,2

Источник: https://meanders.ru/sila-trenija.shtml

Что такое сила трения, формулы

Что такое сила трения, формулы

Определение 1

Сила трения представляет силу, появляющуюся в момент соприкосновения двух тел и препятствующую их относительному движению.

причина, провоцирующая трение, кроется в шероховатости трущихся поверхностей и молекулярном взаимодействии указанных поверхностей. Сила трения зависима от материала соприкасающихся поверхностей и от силы их взаимного прижатия.

Понятие силы трения

Исходя из простых моделей трения (на основании закона Кулона), сила трения будет считаться прямо пропорциональной степени нормальной реакции соприкасающихся и трущихся поверхностей. Если рассматривать в целом, то процессы силы трения невозможно описать только лишь простыми моделями классической механики, что объясняется сложностью реакций в зоне взаимодействия трущихся тел.

Силы трения, подобно силам упругости, обладают электромагнитной природой. Их возникновение становится возможным, благодаря взаимодействию между молекулами и атомами тел, которые соприкасаются.

Замечание 1

Силы трения отличны от сил упругости и гравитационных фактом зависимости не только от конфигурации тел (от их взаимного расположения), но и от относительных скоростей их взаимодействия.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Разновидности силы трения

При условии наличия относительного движения двух контактирующих между собой тел, возникающие в таком процессе силы трения подразделяются на такие виды:

  1. Трение скольжения (представляет силу, возникающую как следствие поступательного перемещения одного из взаимодействующих тел относительно второго и воздействующая на данное тело в направлении, которое будет противоположным направлению скольжения).
  2. Трение качения (представляет момент сил, способный возникать в условиях процесса качения одного из двух контактирующих с другим тел).
  3. Трение покоя (считается силой, возникающей между двумя взаимодействующими телами, при этом она становится серьезным препятствием для возникновения относительного движения. Такая сила преодолевается с целью приведения данных контактирующих тел в движение относительно друг друга. Такой вид трения появляется при микроперемещениях (к примеру, при деформации) контактирующих тел. При возрастании усилий начнется повышение и силы трения.
  4. Трение верчения (является моментом силы, возникающим между контактирующими телами в условиях вращения одного из них в отношении другого и направленным против вращения). Определяется формулой: $M=pN$, где $N$ — нормальное давление, $p$- коэффициент трения верчения, имеющий размерность длины.

Экспериментальным образом была установлена независимость силы трения от площади поверхности, вдоль которой наблюдается соприкосновение тел, и пропорциональность силе нормального давления, с которой одно тело будет действовать на второе.

Определение 2

Постоянная величина представляет коэффициент трения, при этом зависимый от природы и состояния трущихся поверхностей.

В определенных ситуациях трение оказывается полезным. Можно привести примеры с невозможностью хождения человека (при отсутствии трения) и движением автотранспорта. Наряду с тем, трение может оказывать и вредный эффект.

Так, оно провоцирует износ соприкасающихся деталей механизмов, дополнительный расход топлива для транспортных средств. Средством противостояния этому служат различные смазки (воздушные или жидкостные подушки).

Еще одним эффективным способом считается замена скольжения качением.

Основные расчетные формулы для определения силы трения

Расчетная формула силы трения при скольжении будет выглядеть так:

$F=mP$, где:

  • $m$-коэффициент пропорциональности (трения скольжения),
  • $Р$ – сила вертикального (нормального) давления.

Сила трения скольжения представляет одну из управляющих движением сил, а ее формулу записывают с применением силы реакции опоры. На основе действия третьего закона Ньютона, силы нормального давления, а также реакции опоры оказываются равными по величине и противоположными по направлению:

$P=N$

Перед определением силы трения, формула которой будет записываться таким образом: $F=mN$, определяется сила реакции.

Замечание 2

Коэффициент сопротивления при процессе скольжения вводят экспериментально для трущихся поверхностей, при этом он будет зависимым от материала и качества обработки.

Максимальная сила трения покоя определяется подобно силе трения скольжения. Это играет важное значение для решения задач по определению силы движущего сопротивления.

Можно привести пример с книгой, передвигаемой прижатой к ней рукой. Так, скольжение этой книги будет осуществляться под воздействием силы сопротивления покоя между книгой и рукой.

При этом величина сопротивления будет зависеть от показателя силы вертикального давления на книгу.

Интересным будет факт пропорциональности силы трения квадрату соответствующей скорости, а ее формула станет видоизменяться, в зависимости от скорости перемещения взаимодействующих тел. К такой силе можно отнести силу вязкого сопротивления в жидкости.

В зависимости от скорости перемещения, силу сопротивления будет определять скорость движения, форма перемещающегося тела или вязкость жидкости. Движение в масле и воде одного и того же тела сопровождает различное по величине сопротивление. Для незначительных скоростей оно выглядит так:

$F=kv$, где:

  • $k$ – коэффициент пропорциональности, зависящий от линейных размеров тела и свойств среды,
  • $v$ – скорость тела.

Источник: https://spravochnick.ru/fizika/ponyatie_sily_v_fizike/chto_takoe_sila_treniya_formuly/

Находим силу трения. Формула силы трения

Что такое сила трения, формулы

Трение – явление, с которым мы сталкиваемся в обыденной жизни постоянно. Определить, трение вредно или полезно, невозможно. Сделать даже шаг на скользком льду представляется тяжелым занятием, на шероховатой поверхности асфальта прогулка доставляет удовольствие. Детали автомобилей без смазки изнашиваются значительно быстрее.

Изучение трения, знание его основных свойств позволяет человеку использовать его.

Сила трения в физике

Сила, возникающая при движении или попытке движения одного тела по поверхности другого, направленная против направления движения, приложенная к движущимся телам, названа силой трения. Модуль силы трения, формула которой зависит от многих параметров, меняется в зависимости от вида сопротивления.

Отличают следующие виды трения:

• покоя;

• скольжения;

• качения.

Любая попытка сдвинуть с места тяжелый предмет (шкаф, камень) приводит к напряжению сил человека. При этом в движение предмет привести получается не всегда. Мешает этому трение покоя.

Состояние покоя

Расчетная формула силы трения покоя не позволяет определить ее достаточно точно. В силу действия третьего закона Ньютона величина силы сопротивления покоя зависит от приложенного усилия.

При возрастании усилия растет и сила трения.

0 < Fтр.покоя < Fmax

Трение покоя не позволяет вбитым в дерево гвоздям выпадать; пуговицы, пришитые нитками, прочно удерживаются на своем месте. Интересно, что шагать человеку позволяет именно сопротивление покоя. Причем направлено оно по ходу движения человека, что противоречит общему положению вещей.

Явление скольжения

При возрастании внешней силы, движущей тело, до значения наибольшей силы трения покоя оно приходит в движение. Сила трения скольжения рассматривается в процессе скольжения одного тела по поверхности другого. Ее значение зависит от свойств взаимодействующих поверхностей и силы вертикального действия на поверхность.

Расчетная формула силы трения скольжения: F=μР, где μ-коэффициент пропорциональности (трения скольжения), Р – сила вертикального (нормального) давления.

Одна из управляющих движением сил — сила трения скольжения, формула которой записывается с использованием силы реакции опоры. Вследствие выполнения третьего закона Ньютона силы нормального давления и реакции опоры одинаковы по величине и противоположны по направлению: Р = N.

Перед тем как найти силу трения, формула которой приобретает иной вид (F=μ N), определяют силу реакции.

Коэффициент сопротивления при скольжении вводится экспериментально для двух трущихся поверхностей, зависит от качества их обработки и материала.

Таблица. Значение коэффициента сопротивления для различных поверхностей

№ ппВзаимодействующие поверхностиЗначение коэффициента трения скольжения
1Сталь+лед0,027
2Дуб+дуб0,54
3Кожа+чугун0,28
4Бронза+железо0,19
5Бронза+чугун0,16
6Сталь+сталь0,15

Наибольшая сила трения покоя, формула которой была записана выше, может быть определена так же, как сила трения скольжения.

Это становится важным при решении задач на определение силы движущего сопротивления. К примеру, книга, которую движут рукой, прижатой сверху, скользит под действием силы сопротивления покоя, возникающей между рукой и книгой. Величина сопротивления зависит от значения силы вертикального давления на книгу.

Явление качения

Переход наших предков от волокуш к колесницам считается революционным. Изобретение колеса – величайшее изобретение человечества. Трение качения, возникающее при движении колеса по поверхности, значительно уступает по величине сопротивлению скольжения.

Возникновение сил трения качения сопряжено с силами нормального давления колеса на поверхность, имеет природу, отличающую его от скольжения. Вследствие незначительной деформации колеса возникают разные по величине силы давления в центре образовавшейся площадки и по ее краям. Эта разница сил и определяет возникновение сопротивления при качении.

Расчетная формула силы трения качения обыкновенно берется аналогично процессу скольжения. Различие видно исключительно в значениях коэффициента сопротивления.

Природа сопротивления

При изменении шероховатости трущихся поверхностей меняется и значение силы трения. При большом увеличении две соприкасающиеся поверхности выглядят как неровности с острыми пиками.

При наложении именно выступающими частями тела соприкасаются друг с другом. Общая площадь соприкосновения незначительна. При движении или попытке движения тел «пики» создают сопротивление.

Величина силы трения не зависит от площади поверхностей соприкосновения.

Представляется, что две идеально гладкие поверхности должны не испытывать сопротивления абсолютно. На практике сила трения в этом случае максимальна. Объясняется это несоответствие природой возникновения сил. Это электромагнитные силы, действующие между атомами взаимодействующих тел.

Механические процессы, не сопровождающиеся трением в природе, невозможны, ведь возможности «отключить» электрическое взаимодействие заряженных тел нет. Независимость сил сопротивления от взаимного положения тел позволяет назвать их непотенциальными.

Интересно, что сила трения, формула которой меняется в зависимости от скорости движения взаимодействующих тел, пропорциональна квадрату соответствующей скорости. К такой силе относится сила вязкого сопротивления в жидкости.

Движение в жидкости и газе

Перемещение твердого тела в жидкости или газе, жидкости вблизи твердой поверхности сопровождается вязким сопротивлением.

Его возникновение связывают с взаимодействием слоев жидкости, увлекаемых твердым телом в процессе движения. Разная скорость слоев – источник вязкого трения. Особенность этого явления – отсутствие жидкого трения покоя.

Независимо от величины внешнего воздействия тело приходит в движение, находясь в жидкости.

В зависимости от быстроты перемещения сила сопротивления определяется скоростью движения, формой движущегося тела и вязкостью жидкости. Движение в воде и масле одного и того же тела сопровождается различным по величие сопротивлением.

Для небольших скоростей: F = kv, где k – коэффициент пропорциональности, зависящий от линейных размеров тела и свойств среды, v – скорость тела.

Температура жидкости также влияет на трение в ней. В морозную погоду автомобиль разогревают для того, чтобы масло нагрелось (его вязкость уменьшается) и способствовало уменьшению разрушения соприкасающихся деталей двигателя.

Увеличение скорости движения

Значительное увеличение скорости тела может вызвать появление турбулентных потоков, при этом сопротивление резко возрастает. Значение имеют: квадрат скорости движения, плотность среды и площадь поверхности тела. Формула силы трения приобретает иной вид:

F = kv2, где k – коэффициент пропорциональности, зависящий от формы тела и свойств среды, v – скорость тела.

Если телу придать обтекаемую форму, турбулентность можно уменьшить. Форма тела дельфинов и китов – прекрасный пример законов природы, влияющих на скорость животных.

Энергетический подход

Совершить работу по перемещению тела препятствует сопротивление среды. При использовании закона сохранения энергии говорят, что изменение механической энергии равно работе сил трения.

Работа силы рассчитывается по формуле: A = Fscosα, где F – сила, под действием которой тело перемещается на расстояние s, α – угол между направлениями силы и перемещения.

Очевидно, что сила сопротивления противоположна перемещению тела, откуда cosα = -1. Работа силы трения, формула которой имеет вид Aтр = — Fs, величина отрицательная. При этом механическая энергия превращается во внутреннюю (деформация, нагревание).

Источник: https://FB.ru/article/145915/nahodim-silu-treniya-formula-silyi-treniya

Сила трения: определение, формулы

Что такое сила трения, формулы

  • Определение силы трения
  • Виды силы трения
  • Как найти силу трения?
  • Формула силы трения
  • Рекомендованная литература и полезные ссылки
  • Сила трения, видео
  • Сила трения возникает из соприкосновения поверхностей двух физических тел, пребывающих в движении по отношению друг к другу.

    Теория трения издревле волновала умы человечества, древние инженеры: строители Египетских пирамид, Стоунхенджа в Англии или таинственных каменных истуканов на острове Пасхе, все они (как впрочем, и их современные коллеги) решали насущную проблему, связанную с трением и тем как его максимально уменьшить.

    Ведь именно сила трения делает трудным перемещение тяжелых грузов по земле (тех же камней для пирамид или Стоунхенджа), и чтобы облегчить эту задачу, нашими далекими предками было придумано такое полезное изобретение как колесо и сделано множество других важных открытий.

    В нашей статье мы посмотрим на силу трения в физическом аспекте, разберем, как действует она на те или иные тела, какие есть ее виды и формулы расчета.

    Определение силы трения

    Что такое сила трения? Классическое определение звучит так: сила трения – это сила, появляющаяся при соприкосновении двух тел во время движения и препятствующая этому самому движению.

    Иными словами, чем больше сила трения между телами, тем труднее их двигать относительно друг друга.

    Что же касается самой физической природы трения, то оно появляется как результат взаимодействия между атомами и молекулами тел, соприкасающихся между собой.

    Также стоит заметить, что при трении двух тел на них действует третий закон Ньютона: сила трения, действующая на первое тело (тело А), равна силе трения, действующей на второе тело (тело Б), только по модулю эти силы имеют противоположное направление.

    На этой картинке, сила трения, действующая на холодильник, равна силе трения, действующей на пол, но направлены эти силы в противоположные стороны.

    Виды силы трения

    В зависимости от характера движения тел различают такие виды сил трения как:

    • Покоя. Сила трения покоя возникает при соприкосновении двух тел, которые, однако, не движутся относительно друг друга, и имеет нулевое значение.
    • Скольжения. Сила трения скольжения – наиболее классическая иллюстрация действия трения, возникает при скольжении тел относительно друг друга. На ее величину влияет масса тела (чем она больше, тем больше сила трения), характер поверхности (разумеется, при скольжении по льду сила трения будет в разы меньше чем при скольжении по земле).
    • Качения. Сила трения качения появляется, когда одно тело катится по поверхности другого, например, при езде на велосипеде или автомобиле. При качении сила трения гораздо меньше, чем при скольжении. Это опытным, эмпирическим путем установили еще те далекие наши предки, которые изобрели колесо – величайшее изобретение в истории науки и техники.
    • Верчения. Сила трения верчения проявляется при вращении одного тела по поверхности другого.

    Что же касается самого трения то и оно бывает нескольких видов:

    • Сухое – проявляется при соприкосновении твердых поверхностей.
    • Вязкое, также подобное трение называют жидкостным, появляется при соприкосновении твердого тела c жидкостью либо газом. Например, на корабль, плывущий по воде, как и на поверхность воды, действует вязкое (жидкостное) трение. Сила вязкого трения обычно гораздо меньше силы сухого трения.
    • Смешанное, возникает, когда между поверхностями, которые соприкасаются, есть слой смазки.

    Интересный факт: при осаде Константинополя в 1453 году турки, чтобы обойти специальную цепь, преграждающую путь турецким кораблям в залив Золотой Рог перетянули их по суше.

    А для того, чтобы уменьшить силу трения при перемещении больших тяжелых военных кораблей сделали настил из деревянных рельсов, который обильно смазали салом.

    Таким образом, благодаря смазке и смешанному трению, сила которого гораздо меньше, чем при трении сухом, турки удачно воплотили свой замысел, приведя защитников Константинополя в подлинное смятение.

    Султан Мехмед II наблюдает за перевозкой своих судов.

    Как видите, знание законов физики и механики не раз и не два находило свое практическое воплощение в реальной жизни.

    Но вернемся от истории снова к физике, трение также разделяют на внешнее и внутреннее. Внешнее трение характерно для взаимодействия исключительно твердых тел.

    Внутреннее трение характеризуется вязкостью и возникает при взаимодействии жидкостей или газов, а такое взаимодействие может происходить внутри условно одного тела.

    Например, в водах мирового океана есть разные течения, с более холодной или более теплой водой, при взаимодействии этих течений между ними и возникает внутреннее трение.

    Как найти силу трения?

    Чтобы рассчитать силу трения необходимо знать коэффициент трения k, который зависит от характера поверхности. Коэффициент трения – постоянная величина и его значение можно узнать из специальной таблицы.

    Помимо коэффициента трения необходимо знать силу реакцию опоры N, которая, по сути, равна силе тяжести (гравитации) зависящей от массы тела (m) и ускорения свободного падения. Ее формула будет иметь следующий вид:

    N = m * g

    Где m – масса тела, а g – ускорение свободного падения, это постоянная величина равная 9,8 м/с2.

    Формула силы трения

    Сила трения высчитывается путем произведения реакции опоры N и коэффициента трения k. Формула силы трения будет иметь следующий вид:

    Fтр = k * N.

    В некоторых формулах коэффициент трения k обозначается символом µ.

    Написанные выше расчеты справедливы в самом простом случае, когда тело лежит на строго горизонтальной поверхности.

    Если же движение происходит по наклонной плоскости, то расчеты силы трения несколько усложняются. На тело, как и раньше, действует сила гравитации и реакция опоры поверхности, но не в одном направлении.

    Таким образом, формула силы трения для тела, которое движется по наклонной поверхности, будет иметь следующий вид:

    Fтр = k * m * g * cosα.

    Где k – коэффициент трения, m – масса тела, g гравитационная постоянная (помним, что она равна 9,8 м/с2), cosα – отношение катета, прилежащего к углу, к гипотенузе треугольника (косинус).

    При определении силы трения на наклонных поверхностях ярко проявляется связь между физикой и геометрией.

    Рекомендованная литература и полезные ссылки

    • Сила трения. ЗФТШ, МФТИ. Дата обращения 14 февраля 2019.
    • Енохович А. С. Справочник по физике. — Просвещение, 1978. — С. 85. — 416 с.
    • Зайцев А. К. Основы учения о трении, износе и смазке машин. Часть 1. Трение в машинах. Теория, расчет и конструкция подшипников и подпятников скольжения. Машгиз. М.-Л. — 1947. 256 с.
    • Bowden F. P., Tabor D.

      The Friction and Lubrication of Solids. Oxford University Press, 2001.
      Persson Bo N. J.: Sliding Friction. Physical Principles and Applications. Springer, 2002.

    • Popov V. L. Kontaktmechanik und Reibung. Ein Lehr- und Anwendungsbuch von der Nanotribologie bis zur numerischen Simulation, Springer, 2009.
    • Rabinowicz E. Friction and Wear of Materials.

      Wiley-Interscience, 1995.

    Сила трения, видео

    И в завершении образовательное видео по теме нашей статьи.

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Источник: https://www.poznavayka.org/fizika/sila-treniya/

    Booksm
    Добавить комментарий