Бегущие электромагнитные волны

Содержание
  1. Лампа бегущей волны: как это работает
  2. Техника сверхвысоких частот: от военной радиолокации до Wi-Fi
  3. Лампа с бегущей волной: устройство и принцип действия
  4. Как появилась ЛБВ: создана архитектором, а не физиком
  5. Фото 1946 г. Слева направо: будущий теоретик ЛБВ Джорж Пирс, изобретатель Рудольф Компфнер и теоретик шумов Гарри Найквист. На доске – спираль ЛБВ и пучок электронов внутри нее. Ниже – конструкция катода, из которого выходит поток электронов. Выше катода – формула шумов Найквиста
  6. У самого «Истока»: где разработали первую отечественную ЛБВ
  7. Космические старты: ЛБВ для спутников связи и исследований Марса
  8. Радиотехника — бегущие волны в линиях
  9. Стоящие и бегущие волны
  10. △ Все типы волн
  11. Типы волн
  12. Бегущие волны
  13. Стоячие волны
  14. Звуковые волны
  15. Электромагнитные волны
  16. Электромагнитный спектр
  17. Заключение
  18. Большая Энциклопедия Нефти и Газа

Лампа бегущей волны: как это работает

Бегущие электромагнитные волны

Со времени изобретения СВЧ-усилительного прибора лампы бегущей волны (ЛБВ) прошло 75 лет. За эти годы она стала одним из самых распространенных СВЧ-приборов и легла в основу десятков новых изобретений.

У нас в стране первая лампа бегущей волны была создана в 1951 году специалистами фрязинского НПП «Исток». Сегодня в России в сфере производства ЛБВ лидирует холдинг «Росэлектроника».

Входящее в его состав АО «НПП «Алмаз» совсем недавно представило свою новинку – первую российскую бортовую лампу бегущей волны с охлаждением за счет излучения в открытый космос.

Эта разработка сделает спутники связи значительно легче и надежнее.

О том, как появилось на свет это изделие, на чем основаны принципы его работы, а также о сферах его применения – в нашем материале.

Техника сверхвысоких частот: от военной радиолокации до Wi-Fi

Техника сверхвысоких частот (СВЧ) – область науки и техники, связанная с изучением и использованием свойств электромагнитных колебаний и волн в диапазоне частот от 300 Мгц до 300 Ггц.

 Это частотный диапазон электромагнитного излучения еще называется микроволновым диапазоном, так как длины волн очень малы по сравнению с длинами волн обычного радиовещания, составляющими несколько сотен метров.

К СВЧ-излучению применима классическая теория радиоволн, и его можно использовать как средство передачи информации, основываясь на тех же принципах. Благодаря более высоким частотам появляется возможность передачи огромных информационных объемов. Например, один СВЧ-канал может нести одновременно несколько сотен телефонных разговоров.

Дециметровый и сантиметровый диапазоны являлись предметом научного интереса до начала Второй мировой войны, когда возникла необходимость в новом и эффективном электронном средстве раннего обнаружения.

Начались интенсивные исследования СВЧ-радиолокации.

Сходство свойств СВЧ-излучения со световыми лучами  и высокая  плотность переносимой информации оказались очень полезны не только для радиолокационной техники, но и позже нашли свое применение в других областях.

В СВЧ-диапазоне достаточно быстро развиваются телекоммуникации. Сегодня это всеми любимый Wi-Fi, спутниковое телевидение, спутниковая телефония. СВЧ-электроника находит все более широкое применение в связи с развитием таких направлений, как интернет вещей, интеллектуальные производства, системы связи для беспилотников и многое другое.

Излучение СВЧ-диапазона играет важную роль также в исследованиях космического пространства. Один из последних проектов в этой сфере – обсерватория «Миллиметрон» для исследования различных объектов Вселенной в миллиметровом и инфракрасном диапазонах на длинах волн от 0,02 до 17 мм.

СВЧ-усилитель для этой космической обсерватории – лампу бегущей волны (ЛБВ) – создает НПП «Алмаз» (входит в «Росэлектронику» Госкорпорации Ростех).

Уже испытаны первые экспериментальные образцы, которые позволяют усилить мощность радиосигналов в сотни тысяч раз: разместить обсерваторию планируется на расстоянии 1,5 млн км от Земли.

Развитие техники сверхвысоких частот стало возможным благодаря появлению специальных электровакуумных приборов для генерации и усиления электромагнитных волн СВЧ-диапазона. К ним относится не только вышеупомянутая лампа бегущей волны, но и другие мощные электровакуумные приборы, такие как клистроны, магнетроны.

К примеру, магнетрон можно найти практически в любом доме. Каждая микроволновая печь содержит магнетрон мощностью около 800 Вт, который преобразует электрическую энергию в сверхвысокочастотное электрическое поле частотой 2,45 ГГц. Кстати, выпуск первых в мире СВЧ-печей начался в 1947 году, всего четыре года спустя была придумана лампа бегущей волны.

ЛБВ, хоть и не применяются в микроволновых печах, стали одними из самых распространенных вакуумных СВЧ-приборов. Они широко используются в различной радиоэлектронной аппаратуре: радиолокации, связи, системах радио-противодействия.

Лампа с бегущей волной: устройство и принцип действия

С момента изобретения лампы бегущей волны прошло уже более 75 лет. С тех пор ее конструкция практически не изменилась.

Но, несмотря на кажущуюся простоту, все основные части ЛБВ являются достаточно сложными устройствами, усовершенствование которых длится до сих пор. В мире всего лишь в некоторых странах разрабатывают и выпускают ЛБВ.

Кроме предприятий в России, это компании из нескольких европейских стран, а также США, Японии, Индии, Китая и Южной Кореи.

Итак, начнем с определения. Лампа бегущей волны – вакуумный электронный прибор, в котором в результате длительного взаимодействия движущихся электронов с полем бегущей электромагнитной волны происходит усиление этой волны.

От полупроводниковых и газоразрядных приборов лампу отличает наличие в ней вакуума. ЛБВ представляет собой вакуумную трубку, вставленную в фокусирующую магнитную систему.

Так как лампа работает с электронами, нужен катод – электрод, из которого извлекаются электроны.

Соблюдая закон сохранения заряда, извлеченные электроны нужно вернуть, для чего потребуется анод – электрод, который притягивает к себе летящие электроны, испущенные катодом.

Итак, поток электронов, сфокусированный в узкий луч, движется к коллектору. Для окончательной фокусировки луча используется магнитное поле катушки.

В качестве замедляющей системы в усилительных ЛБВ чаще всего используется спираль. Электронный луч проходит вдоль оси спирали, а по самой спирали бежит волна усиливаемого сигнала. Диаметр, длина и шаг спирали, а также скорость электронов подобраны таким образом, что электроны отдают часть своей кинетической энергии бегущей волне.

Вначале это кажется нереальным: ведь волна бежит со скоростью света, а электроны движутся почти в десять раз медленнее. Но поскольку СВЧ-сигнал идет по спирали, он достаточно долго взаимодействует с электронами и усиливается, поглощая их энергию. На выходе лампы амплитуда волны намного превышает амплитуду сигнала на входе.

Этот процесс образно и весьма интересно в своей статье описал российский физик Леонид Ашкинази: «Представьте себе, что лифт движется чуть быстрее человека и из него подталкивают бегущего по винтовой лестнице человека – быстрее, быстрее! Согласно третьему закону Ньютона, на лифт будет действовать сила, направленная против движения, он будет тормозиться и отдавать свою энергию человеку, бегущему по лестнице. В итоге их скорости уравняются. Не обвивайся лестница вокруг шахты лифта, ничего бы не получилось – человек движется по прямой лестнице быстрее лифта. А если она обвивается, длина ее увеличивается. Можно подобрать угол наклона витков спирали («лестницы») и скорость электронов («лифта») так, чтобы электромагнитная волна, бегущая по спирали, имела ту же скорость перемещения вдоль оси спирали, что и электроны».

Как появилась ЛБВ: создана архитектором, а не физиком

Синхронизировать бегущую волну с электронами в лампе со спиралью впервые смог австрийский архитектор Рудольф Компфнер в конце 1943 года в лаборатории СВЧ-приборов Бирмингемского университета. Он и считается автором лампы бегущей волны – по-английски Traveling-Wave Tube (TWT).

Невероятно, но Компфнер действительно был архитектором по образованию. Эмигрировав в Англию в конце 1930-х, он продолжил работу архитектором в Лондоне. Но в 1939 году началась Вторая мировая война, и он, как подданный Германии, оказался на острове Мэн вместе с другими выходцами из «враждебных» государств.

Компфнер еще в юности очень увлекался физикой, поэтому на острове Мэн только обрадовался возможности оказаться рядом с находившимися здесь профессорами физики. Подкрепив свои знания, в 1940 году ему удается устроиться на факультет физики Бирмингемского университета, где разрабатывались приборы для радаров.

Фото 1946 г. Слева направо: будущий теоретик ЛБВ Джорж Пирс, изобретатель Рудольф Компфнер и теоретик шумов Гарри Найквист. На доске – спираль ЛБВ и пучок электронов внутри нее. Ниже – конструкция катода, из которого выходит поток электронов. Выше катода – формула шумов Найквиста

РЛС активно совершенствовались: на фоне постоянных бомбежек немецких самолетов инженеры искали способ увеличения дальности радиолокаторов.

Изобретенная тогда конструкция многорезонаторного импульсного магнетрона для передатчиков радаров не справлялась с задачей. Спасти положение могло бы увеличение чувствительности приемной станции.

Но для этого нужен был малошумящий усилитель СВЧ, а его не было. Усилительный (прямопролетный) клистрон с входным и выходным резонатором тоже не помог.

Руди Компфнер, как архитектор, предложил полностью изменить конструкцию электровакуумного прибора.

Вместо входного резонатора электромагнитная волна должна бежать по проволочной цилиндрической спирали и взаимодействовать с пучком электронов, летящих внутри длинной спирали.

Считалось, что если волна будет долгое время взаимодействовать с пучком, то снизится и доля электронного шума в сигнале.

Чтобы удержать электроны внутри длинной спирали, необходимо магнитное поле соленоида. Так лампа бегущей волны обрела свой привычный вид. Интересен тот факт, что позже ученые поняли – причиной снижение коэффициента шума, которого так добивался Компфнер, была не спираль, а фокусировка магнитным полем, которое стабилизирует «метанье» электронов.

На протяжении всех последующих десятилетий ЛБВ постоянно совершенствовалась, работы в этой сфере велись непрерывно, в том числе и советскими учеными. Первые лампы бегущей волны были разработаны специалистами фрязинского НИИ-160, ныне это НПП «Исток», входящее в холдинг «Росэлектроника».

У самого «Истока»: где разработали первую отечественную ЛБВ

В конце 1940-х за рубежом и у нас в стране появились первые публикации на тему ЛБВ. Статей по теории было много, но на практике даже сами авторы не до конца понимали, как создать конструкцию реально работающей ЛБВ.

На «Истоке» была поставлена задача на правительственном уровне – разработать первый отечественный промышленный образец ЛБВ.

В том же 1951 году прибор был принят госкомиссией, а с 1952 года начался серийный выпуск первой отечественной лампы бегущей волны УВ-1. По своему основному параметру – коэффициенту шума – она не имела себе равных за рубежом.

Только в 1953 году появились сообщения о создании в США лампы с такими же параметрами, как УВ-1, на тот момент уже выпускаемой серийно.

Впервые усилитель УВ-1 был применен в радиолокационном комплексе Б-200, что позволило намного улучшить характеристики комплекса: повысилась дальность действия, резко возросла устойчивость приемного канала. За несколько лет УВ-1 вошла практически во все новые локационные станции. К 1965 году этот прибор использовался уже в 11 радиолокационных станциях, а выпуск его составлял 11,5 тысяч штук в год.

Началась эпоха непрерывного улучшения параметров ламп бегущей волны: расширялись полосы ее рабочих частот, снижался вес, увеличивалась надежность и долговечность.

Космические старты: ЛБВ для спутников связи и исследований Марса

Одним из основных компонентов спутника связи являются передатчики именно на лампах бегущей волны. В 1960-е годы началась разработка малошумящих ЛБВ для спутниковых систем связи. Эти ЛБВ успешно работали на первых отечественных спутниках «Молния» и «Горизонт».

Началось создание наземной системы «Орбита», которая к 1967 году позволила охватить аудиторию телезрителей до 30 миллионов человек. Разработанные на «Истоке» ЛБВ использовались и в передатчиках спутников-исследователей Венеры и Марса, а также в других направлениях освоения космоса.

Сегодня вокруг Земли вращаются спутники связи с десятками фрязинских ЛБВ.

Сверхчастотные приборы за десятилетия космической эпохи доказали свою сверхвысокую надежность. Но новые космические старты впереди – сегодня «Росэлектроника» продолжает традиции. Холдинг представил на МАКС-2019 первую российскую бортовую лампу бегущей волны с охлаждением за счет инфракрасного излучения в открытый космос.

Разработка позволяет снизить тепловую нагрузку на систему обеспечения терморегуляции космического аппарата более чем в два раза, что, в свою очередь, увеличивает стабильность работы спутника. Лампа бегущей волны УВ-А2014, разработанная «Росэлектроникой», может использоваться как в гражданских, так и в специальных спутниках связи.

Ее выходная мощность составляет до 130 Вт, а коэффициент усиления – 50 дБ.

Новинка позволит отказаться от импортных ЛБВ, в настоящее время все еще используемых в российских космических аппаратах. Оригинальные идеи наших ученых, исследователей и конструкторов, которые уже на протяжении семи десятилетий ведут непрерывную работу в этой сфере, создают конкуренцию ведущим мировым производителям.

Источник: https://rostec.ru/news/lampa-begushchey-volny-kak-eto-rabotaet/

Радиотехника — бегущие волны в линиях

Бегущие электромагнитные волны

Проволочная линия или любой провод является электрической цепью с распределенными параметрами. В отличие от электрических цепей с сосредоточенными параметрами, в которых индуктивность сосредоточена в катушках, а емкость — в конденсаторах, у линий каждый участок провода обладает емкостью, индуктивностью и активным сопротивлением. Эти параметры в линии распределены вдоль всего провода.

Электрические цепи с сосредоточенными параметрами обычно имеют малые размеры по сравнению с длиной волны.
Напряжение и ток в них распространяются за промежутки времени, во много раз меньшие, чем период колебаний.

Поэтому процессы в таких цепях рассматриваются только во времени. А линии имеют длину такого же порядка, как длина волны, и время распространения тока и напряжения в них получается такого же порядка, что и период колебаний. Вследствие этого в линиях приходится изучать процессы не только во времени, но и в пространстве.

Рис.1 — Бегущая волна в линии

Линии, служащие для передачи электромагнитных колебаний высокой частоты, принято называть длинными линиями, в отличие от коротких линий, длина которых много меньше длины волны.

С этой точки зрения линия электропередачи длиной 100 км, работающая на частоте 50 гц, является короткой, так как при столь низкой частоте длина волны составляет 6 000 000 м, или 6000 км. Зато линия, имеющая длину 1 м, при частоте 100 Мгц считается длинной, потому что длина волны в этом случае равна 3 м.

В радиотехнике целесообразно измерять длину линий не линейными мерами, а длиной волны. Тогда сразу ясно, что линии, имеющие длины 1/4?, 1/2?, 2?, 5? и т.д., т.е. сравнимые с длиной волны, являются длинными.

Следует уточнить понятие о поперечных размерах линии. Принято считать линией только такую систему из двух параллельных проводов, которая имеет поперечные размеры, т. е. расстояние между проводами и толщину проводов, много меньше длины волны.

Когда к линии подключен генератор переменной эдс (рис.1), то вдоль линии двигается бегущая волна. Она представляет собой распространение электромагнитного поля в одном направлении, в данном случае от генератора к концу линии. Скорость распространения бегущей волны вдоль линии определяется по формуле

где L1 и С1 — погонные индуктивность и емкость линии, т. е. индуктивность и емкость, выраженные в генри и фарадах на единицу длины.

Величины L1 и С1 зависят от конструкции линии. Чем больше поверхность проводов линии и чем меньше расстояние между ними, тем больше погонная емкость С1 и тем меньше погонная индуктивность L1. Обычно L1 имеет порядок единиц микрогенри на метр, а С1 составляет несколько пикофарад на метр.

Для воздушной линии, между проводами которой изолятором является воздух, произведение L1C1 всегда имеет значение — 1/с?, где с — скорость света в безвоздушном пространстве. Поэтому V — с, т. е. скорость распространения бегущих волн вдоль воздушной линии равна скорости света.

В такой линии при изменении емкости С1, например, путем изменения диаметра проводов или расстояния между ними индуктивность L1 всегда изменяется в обратную сторону, так что произведение L1C1 остается постоянным, а следовательно, и скорость распространения в любом случае равна 3*10(в 8 степени) м/сек.

При наличии твердой изоляции между проводами или изоляторов, поддерживающих провода, скорость v уменьшается.

Действительно, если между проводами имеется диэлектрик, то погонная емкость возрастет, но индуктивность не изменится; произведение L1C1 увеличится и скорость распространения V уменьшится,
Зависимость скорости распространения от диэлектрической и магнитной проницаемостей среды, окружающей провода, определяется формулой, приведенной в предыдущем параграфе.

При распространении бегущей волны вдоль линии в проводах возникает колебание электронов, которое передается дальше, захватывая новые, более удаленные участки линии.

Вдоль линии распространяются переменный ток и переменное напряжение. В каждой точке провода ток и напряжение (относительно другого провода или относительно земли) изменяются во времени.

Но вместе с тем колебательный процесс передается вдоль линии от одних ее точек к другим.

Бегущую волну, представляющую собой распространение механических колебаний, можно наглядно получить на опыте с длинной веревкой. Если один ее конец привязать, а другой встряхнуть, то по веревке «пробежит» волна.

Распространение бегущей волны можно изобразить графически. Рассмотрим такой график для одного провода. В другом проводе происходит такой же процесс с обратной фазой. Примем провод за нулевую ось и будем в некотором масштабе откладывать под прямым углом к проводу величину напряжения. Тогда бегущая волна для разных моментов времени может быть изображена так, как показано на (рис.1).

Пусть в момент включения напряжение генератора имеет амплитудное значение. Так как в этот момент волна еще не успела распространиться вдоль провода, то никакого напряжения и тока в линии еще нет (рис.1 а).

Через четверть периода волна распространится на расстояние, равное четверти длины волны, и амплитуда напряжения будет на таком же расстоянии от генератора. Но в самом начале линии в этот момент напряжение уже равно нулю (рис.1 б), так как к этому времени до нуля уменьшилось напряжение генератора.

Еще через четверть периода напряжение генератора, т. е. в начале линии, опять станет наибольшим, но с обратным знаком, а волна пройдет вдоль линии расстояние, равное 1/2 ? (рис.1 в). На (рис.1 г,и,д) показано распределение напряжения в линии в моменты времени t = 3/4 T и t = Т после начала процесса.

Кроме того, на (рис.1 д) штрихом изображено распределение напряжения для нескольких следующих моментов.

Надо помнить, что при таком графическом изображении волны вдоль горизонтальной оси отложено не время, а расстояние. Каждая синусоида, показанная на (рис.1), изображает распределение напряжения вдоль линии для некоторого момента времени.

Для следующего момента кривая будет смещена вдоль оси, так как волна распространяется от генератора. Можно показать графически изменение напряжения во времени для какой-нибудь точки линии. Оно также изображается синусоидой, но вдоль горизонтальной оси должно быть отложено время.

Это будет график колебания, а не бегущей волны.

При бегущей волне изменения тока и напряжения совпадают по фазе. Если в какой-либо точке линии в данный момент напряжение наибольшее, то и ток наибольший, а через четверть периода в этой точке и ток и напряжение будут равны нулю. Поэтому кривые на (рис.1) вместе с тем изображают в другом масштабе и распределение тока.

Напряжение (разность потенциалов) связано с наличием электрического поля, а ток всегда сопровождается магнитным полем. В том месте линии, где напряжение наибольшее, и электрическое поле наиболее сильное, а магнитное поле сильнее всего там, где ток имеет наибольшее значение.

Так как у бегущей волны ток и напряжение совпадают по фазе, то изменения электрического и магнитного полей также совпадают по фазе. На (рис.2) показаны электрическое и магнитное поля для поперечного разреза линии и распределение этих полей вдоль линии. Ясно, что кривые на (рис.

1) показывают распределение вдоль линии не только напряжения и тока, но также электрического и магнитного полей.

Для каждой линии отношение амплитуды напряжения бегущей волны Um к амплитуде тока бегущей волны Im или отношение их действующих значений (U, I) является постоянной величиной. Она называется волновым сопротивлением линии Zo и зависит от конструкции линии.

Рис.2 — Электрическое и магнитное поля в линии

Чем больше емкость линии, тем больше ток, возникающий в ней под действием данного напряжения, подобно тому, как возрастает зарядный ток конденсатора при увеличении его емкости.

А при увеличении индуктивности линии ток уменьшается за счет возросшего противодействия ЭДС самоиндукции. Отсюда следует, что волновое сопротивление уменьшается при увеличении емкости линии и возрастает при увеличении ее индуктивности.

Математически это выражает формула

У линий из двух одинаковых параллельных проводов величина Zo обычно составляет сотни ом. При увеличении диаметра проводов и уменьшении расстояния между ними С1 растет, а L1 уменьшается, и поэтому Zo также уменьшается.

Так как напряжение и ток в бегущей волне совпадают по фазе, то волновое сопротивление следует считать активным. Мощность бегущей волны также является активной и определяется формулой

Для получения режима бегущей волны нужно в конце линии включить активное сопротивление R, равное волновому сопротивлению 20 (рис.3). Тогда вся мощность бегущей волны поглощается в этом сопротивлении и энергия все время безвозвратно уходит от генератора. В этом случае говорят, что линия согласована с нагрузочным сопротивлением.

Важной величиной является входное сопротивление линии Zвх, т. е. сопротивление линии для питающего генератора.

Оно равно отношению напряжения и тока в начале линии. В зависимости от значения Zвх генератор работает в том или ином режиме и отдает в линию большую или меньшую мощность. Для режима бегущей волны входное сопротивление является активным и равно волновому сопротивлению линии:

В каждой линии имеются потери энергии. Поэтому амплитуды тока и напряжения бегущей волны по мере удаления ее от генератора уменьшаются, т. е. волна при своем распространении вдоль линии затухает.

Существует ряд причин, вызывающих потери энергии в линии. Ток нагревает провода. Переменное электрическое поле нагревает изоляторы. Часть энергии уходит с излучаемыми в пространство электромагнитными волнами.

В проводниках,

Рис.3 — Нагрузка линии для получения режима бегущих волн

расположенных вблизи линии, например в земле, других линиях, металлических крышах и т.д.

, под действием электромагнитного поля линии индуктируются токи, которые создают расход энергии.

В изоляторах возникают токи утечки, а при высоких напряжениях наблюдается стекание электрических зарядов в воздух, сопровождающееся свечением (явление «короны»).

У правильно построенных линий в режиме бегущей волны потери энергии незначительны, так что ими во многих случаях пренебрегают. Теория работы такой идеальной линии гораздо проще, чем теория процессов в линии с потерями.

Практически коэффициент полезного действия (кпд) линии, равный отношению мощности в конце линии к мощности в ее начале, при режиме бегущей волны получается достаточно высоким (порядка 80—95%) даже при значительной длине линии.

Далее, если нет оговорок, мы будем рассматривать идеальные линии.

Источник: https://www.radioingener.ru/radiotexnika-begushhie-volny-v-liniyax/

Стоящие и бегущие волны

Бегущие электромагнитные волны

Электромагнитные волны и их свойства. Принципы радиосвязи и примеры их практического использования.

Английский учёный Джеймс Максвелл на основании изучения экспериментальных работ Фарадея по электричеству высказал гипотезу о существовании в природе особых волн, способных распространяться в вакууме. Эти волны Максвелл назвал электромагнитными волнами.

По представлениям Максвелла: при любом изменении электрического поля возникает вихревое магнитное поле и, наоборот, при любом изменении магнитного поля возникает вихревое электрическое поле.

Однажды начавшийся процесс взаимного порождения магнитного и электрического полей должен непрерывно продолжаться и захватывать все новые и новые области в окружающем пространстве (рис.). Процесс взаимопорождения электрических и магнитных полей происходит во взаимно перпендикулярных плоскостях.

Переменное электрическое поле порождает вихревое магнитное поле, переменное магнитное поле порождает вихревое электрическое поле.

Электрические и магнитные поля могут существовать не только в веществе, но и в вакууме. Поэтому должно быть возможным распространение электромагнитных волн в вакууме.

Условием возникновения электромагнитных волн является ускоренное движение электрических зарядов.

Так, изменение магнитного поля происходит при изменении тока в проводнике, а изменение магнитного поля происходит при изменении скорости зарядов, т.е. при движении их с ускорением.

Скорость распространения электромагнитных волн в вакууме, по расчётам Максвелла, должна быть приблизительно равна 300000 км/с.

Впервые опытным путём получил электромагнитные волны физик Генрих Герц, использовав при этом высокочастотный искровой разрядник (вибратор Герца).

Герц опытным путём определил также скорость электромагнитных волн. Она совпала с теоретическим определением скорости волн Максвеллом.

Простейшие электромагнитные волны – это волны, в которых электрическое и магнитное поля совершают синхронные гармонические колебания.

Конечно, электромагнитные волны обладают всеми основными свойствами волн.

Они подчиняются закону отражения волн: угол падения равен углу отражения.

При переходе из одной среды в другую преломляются и подчиняются закону преломления волн: отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и равная отношению скорости электромагнитных волн в первой среде к скорости электромагнитных волн во второй среде и называется показателем преломления второй среды относительно первой.

Явление дифракции электромагнитных волн, т.е. отклонение направления их распространения от прямолинейного, наблюдается у края преграды или при прохождении через отверстие. Электромагнитные волны способны к интерференции.

Интерференция – это способность когерентных волн к наложению, в результате чего волны в одних местах друг от друга усиливают, а в –других местах – гасят. (Когерентные волны – это волны, одинаковые по частоте и фазе колебания.) Электромагнитные волны обладают дисперсией, т.е.

когда показатель преломления среды для электромагнитных волн зависит от их частоты. Опыты с пропусканием электромагнитных волн через систему из двух решеток показывают, что эти волны являются поперечными.

При распространении электромагнитной волны вектора напряжённости Е и магнитной индукции В перпендикулярны направлению распространения волны и взаимно перпендикулярны между собой (рис.2).

Возможность практического применения электромагнитных волн для установления связи без проводов продемонстрировал 7 мая 1895 года русский физик А. Попов. Этот день считается днём рождения радио. Для осуществления радиосвязи необходимо обеспечить возможность излучения электромагнитных волн.

Если электромагнитные волны возникают в контуре из катушки и конденсатора, то переменное магнитное поле оказывается связанным с катушкой, а переменное электрическое поле – сосредоточенным между пластинами конденсатора. Такой контур называется закрытым (рис.3 а). Закрытый колебательный контур практически не излучает электромагнитные волны в окружающее пространство.

Если контур состоит из катушки и двух пластин плоского конденсатора, то под чем большим углом развёрнуты эти пластины, тем более свободно выходит электромагнитное пространство (рис. 3 б). Предельным случаем раскрытого колебательного контура является удаление пластин на противоположные концы катушки. Такая система называется открытым колебательным контуром (рис.

3 в). В действительности контур состоит из катушки и длинного провода – антенны.

Энергия излучаемых (при помощи генератора незатухающих колебаний) электромагнитных колебаний при одинаковой амплитуде колебаний силы тока в антенне пропорциональна четвёртой степени частоты колебаний.

На частотах в десятки, сотни и даже тысячи герц интенсивность электромагнитных колебаний ничтожна мала.

Поэтому для осуществления радио и телевизионной связи используются электромагнитные волны с частотой от нескольких сотен тысяч герц до сотен мегагерц.

При передаче по радио речи, музыки и других звуковых сигналов применяют различные виды модуляции высокочастотных (несущих) колебаний.

Суть модуляции заключается в том, что высокочастотные колебания, вырабатываемые генератором, изменяют по закону низкой частоты. В этом и заключается один из принципов радиопередачи. Другим принципом является обратный процесс – детектирование.

При радиоприёме из принятого антенной приёмника модулированного сигнала нужно отфильтровать звуковые высокочастотные колебания.

С помощью радиоволн осуществляется передача на расстояние не только звуковых сигналов, но и изображения предметов. Большую роль в современном морском флоте, авиации и космонавтике играет радиолокация. В основе радиолокации лежит свойство отражения волн от проводящих тел. (От поверхности диэлектрика электромагнитные волны отражаются слабо, а от поверхности металлов почти полностью.)

Волна –это колебание, распространяющееся в пространстве с течением времени

Поперечные волны – волны, в которых направление распространения колебаний перпендикулярно направлению распространения волны

Продольные волны – волны, в которых направление колебаний происходит вдоль направления распространения волны

Интерференция – сложение в пространстве двух (или нескольких) волн, при котором образуется постоянное во времени распределение амплитуды результирующих колебаний в различных точках пространства.

Дифракция – отклонение от прямолинейного распространения волн, огибание волнами препятствий

Длина волны – расстояние между двумя точками, движущимися в одной фазе.

Радиолокация – обнаружение и точное определение положения объекта с помощью радиоволн

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/11_59582_stoyashchie-i-begushchie-volni.html

△ Все типы волн

Бегущие электромагнитные волны

Современный мир полон волн, они находятся в нашей повседневной жизни, мы можем обнаружить звуковые волны – в музыке, механические – в колебании струн,  электромагнитные волны в электричестве  и при свете.

Галилео. Эксперимент. Резонанс от волны

Типы волн

  • Итак, что же такое волны? Они не имеют ни цвета, ни запаха, ни формы. Волны, скорее, представляют собой процесс или некое состояние, которые мы можем описать математически и отнести к каким-либо физическим явлениям.
  • Зато волны обладают свойствами,  и одним из них является способность передавать энергию из одной точки в другую, подобно любому передвигающемуся объекту.  С этим свойством мы, так же, можем столкнуться в повседневной жизни. Например, при шторме, сила морской волны настолько велика, что способна переместить камень весом в тонну, при сжигании угля, мы пользуемся продуктом сгорания, а солнечные батареи способны трансформировать одну десятую солнечной энергии в электрическую.
  • Ещё одним свойством волны является линейность. Она проявляется в способности колебаний одной волны не влиять на колебания другой, а проходить параллельно. Например, при разговоре двух людей, звуковые волны не отражаются, а, как бы, накладываются, друг на друга.

Волны – это фундаментальное понятие в физике, на котором основываются многие явления и процессы в природе и быту. Ещё Леонардо да Винчи писал в пятнадцатом столетии о волнах: «Импульс гораздо быстрее воды, потому что многочисленны случаи, когда волна бежит от точки возникновения, а вода не двигается с места…»

Модели бегущих и стоячих волн

Бегущие волны

Волны, подчиняющиеся синусоидальному закону. Характеристиками таких волн являются скорость, период и длина волны.

Скорость распространения волны характеризует перемещение фаз в пространстве и зависит, сколько не от частоты, а от среды, в которой протекает волна.

Впервые скорость распространения волны в воде была выведена в 1828 году, в Швейцарии. Опыт был проведен следующим образом:  ночью, в спокойную и тихую погоду, на большом расстоянии в пруду размещались две лодки.

На одной из них человек зажигал порох, а под водой ударял в колокол, другой человек, находящийся во второй лодке, замерял разницу во времени между звуком и вспышкой света.

Скорость распространения волны под водой составляет 1040 м/сек, в то время, как в воздухе эта величина 330 м/сек.

Бегущие волны на воде

Стоячие волны

Бегущие волны на воде

Стоячие волны

Стоячие волны представляют собой сумму подающей и отраженной волны. Для образования таких видов волн, необходимо, чтобы интенсивность падающей и отраженной волны была одинакова.

В идеальном случае, в стоячей волне переноса энергии не осуществляется. Но, так как идеальной модели в мире  не существует, то перенос всё же осуществляется.

Примером стоячей волны может служить пластмассовая трубка изогнутая синусоидально, через которую протянут шнур. Перемещая трубку горизонтально,  имитируется бегущая волна с некоторой скоростью. Далее, вращают трубку вокруг оси, получая синфазное изменение амплитуды.

Звуковые волны ( звуки музыки ) — Наука 2.0

Звуковые волны

С помощью звуков, человек получает большее количество информации. Человеческое ухо способно воспринимать звуки частотой от 20 до 20000 Гц. Распространение звуков осуществляется не только в воздухе, но и в других средах. Под водой, например, отчетливо различимы звуки мотора лодки, а «слухачи» прислушивались к звукам, издаваемые противником.

С помощью звуковых волн, человек так же осуществляет общение, поэтому учение о звуке представляет собой большой раздел, который именуется акустикой. Для того, чтобы звук лучше воспринимался органами слуха, он так же должен обладать соответствующей интенсивностью, или, проще говоря, громкостью. Наиболее оптимальный диапазон для человека составляет 1000-4000 Гц.

Звуковые волны

Музыка играет в нашей жизни огромное значение. Её звучание является гармоничным. Тогда в чем секрет приятного звучания того или иного звука? Дело в том, что чистый звук обладает определенным количеством колебаний, звуки, не обладающие оным, являются раздражающими, то есть обычным шумом.

В 1780-е годы немецкий музыкант и физик Эрнст Хланди предложил оригинальный способ измерения звуковых волн. Он с помощью звука вызвал вибрацию тонкой металлической пластинки с порошком на поверхности, и нашел, что порошок собирается в различные рисунки за счет интерференции вибраций. Затем он вывел формулы для вычисления свойств звука, исходя из рисунков, которые получились.

Впервые звук удалось записать американскому изобретателю Томасу Алва Эдисону с помощью фонографа в 1877 году. Эта система функционировала с помощью давления звуковых волн, которое двигало иголку вверх-вниз, а та выцарапывала углубления на куске оловянной фольги, намотанной на вращающий цилиндр.

Фонограф Эдисона пользовался огромным успехом, но имел и недостатки. Например, запись могла производиться лишь единожды.

Электромагнитные волны

Изучение электромагнитных волн имеет огромное значение, и это явление оказало воздействие на все сферы жизни человека.

Впервые электромагнитные волны были обнаружены Г. Герцем (1857-1894) при проведении им классических опытов. Для возбуждения электромагнитных волн, был применен искровой генератор. Колебания он смог обнаружить с помощью резонатора, наблюдая через лупу за возникновением мелких искр.

Шкала электромагнитных волн 1

Шкала электромагнитных волн 2

Одним из самых выдающихся применений передачи электричества  является создание в 1837 году телеграфного устройства американскими изобретателями Сэмюэлом Морзе и Альфредом Вэйлом.

Так же они подарили жизнь азбуке Морзе – системе кодировки, представляющей собой электрические сигналы, в виде «точек» и «тире», передаваемых по проводу. Далее этот код переводился в слова.

Азбука Морзе стала использоваться в военной инфраструктуре США в конце 19-го века и далее Европа и Америка соединились  трансатлантическим кабелем.

Электромагнитные волны

Электромагнитный спектр

Радиоволны

Появление радиоволн значительно изменило жизнь общества, обеспечивая бесперебойную связь и передачу информации без использования телефонных проводов и кабелей.

В 1988 г. Генрих Герц стал первым ученым, кто смог генерировать радиоволны. Он создал «дипольную антенну», в которой для генерирования радиоволн используются.  высокочастотные колебания зарядов в длинном проводе, возбуждающиеся при внезапном разряде через искровой промежуток.

Вторая такая же антенна находилась в удалении от первой, и когда в её промежутке возникала искра, было ясно, что она создана электромагнитной волной.

Появлением радио, кстати говоря, человечество обязано Николе Тесла, который создал антенны, способные передавать радиосигналы высокой частоты на большие расстояния (1890-е).

Электромагнитный спектр – это «континуум» излучаемых волн, с потенциально бесконечным диапазоном. Этот спектр представляет собой бесконечное количество волн различной длины. По мере уменьшения длины волны, увеличивается частота и проникающая способность волны. Однако скорость распространения в вакууме всех волн одинакова.

Микроволны – являются радиоволнами с самой короткой длиной. От 1 см до 100 мкм, широко используются в быту, например в микроволновых печах.

Инфракрасные лучи – можно обнаружить в любых нагретых телах. Это и есть тепло. Прямое изображение в инфракрасном свете стало возможно в 50-х годах 20-го века, когда были изобретены детекторы, чувствительные к длинам волн. Они способны превращать инфракрасное излучение в видимое, а так же отображать тепловые зоны.

Ультрафиолетовые – коротковолновое излучение. Так как фотоны этого излучения являются энергичными, то они являются опасными для живых организмов. Многие цветы окрашены ультрафиолетовым светом. Эта адаптация способствует опылению, привлекая к себе насекомых, способных различать ультрафиолетовое излучение.

Рентгеновские лучи – эти лучи несут большое количество энергии, и так же, являются опасными для живых клеток.

Заключение

Казалось бы, невидимая, не имеющая ни запаха, ни материального представления, волна способна стать инструментом для многих изобретений, она может принимать форму, приобретать свойства и признаки. Открытие волн, а так же их применение, сыграло колоссальную роль в науке и технике. Важно, что открытие волн послужило «ступенькой» для дальнейшего развития прогресса.

Источник: https://www.13min.ru/nauka/vse-tipy-voln/

Большая Энциклопедия Нефти и Газа

Бегущие электромагнитные волны

Cтраница 1

Бегущая электромагнитная волна — переменное электромагнитное поле, распространяющееся вдоль РґРІСѓС…РїСЂРѕРІРѕРґРЅРѕР№ линии, кабеля РїСЂРё питании РёС… переменным напряжением.  [1]

Бегущая электромагнитная волна представляет электрическую энергию волны напряжения Рё магнитную энергию волны тока; эти волны распространяются РѕС‚ места возмущения РІ РѕР±Рµ стороны электрической цепи.  [2]

Усиление бегущей электромагнитной волны достигается передачей ей кинетической энергии электронов РІ процессе взаимодействия СЃ электронным потоком.  [4]

Р’ бегущей электромагнитной волне РІ любой момент времени Р’ — Р•1СЃ; поэтому РїСЂРё РёРЎСЃ второе слагаемое РІ (14.

11) — сила Лоренца — всегда РјРЅРѕРіРѕ меньше первого.

РќРѕ именно СЃ силой Лоренца связано давление, оказываемое волной, РІ то время как первое слагаемое, qE, определяет энергию, поглощаемую преградой.  [6]

Нагрев бегущей электромагнитной волной используется для тепловой обработки пищевых продуктов.

Конструктивно такая установка представляет СЃРѕР±РѕР№ конвейерную систему СЃ РѕРґРЅРёРј или несколькими магнетронами, рабочей камерой — волноводом Рё устройствами для РІРІРѕРґР° Рё вывода загрузки.  [8]

Задача 5.14.

Монохроматическая бегущая электромагнитная волна падает на атомарную среду, причем атомные уровни 0 и k находятся в резонансе с частотой со волны.

Считая известной возникаюшую РІ среде поляризацию, определить вклад РІ интенсивность излучения РЅР° выходе РёР· среды, обязанный ее поляризации.  [9]

Процедура квантования бегущих электромагнитных волн, вообще РіРѕРІРѕСЂСЏ, обратна той, которая применялась РІ РіР».  [10]

Так как РІ бегущей электромагнитной волне векторы напряженности электрического поля Р•, магнитного поля Рќ Рё скорости распространения v связаны правилом правого буравчика, скорость электромагнитной волны изменится РЅР° противоположную РІ том случае, если РѕРґРёРЅ РёР· векторов Р• или Рќ изменит знак, или, РґСЂСѓРіРёРјРё словами, если фаза его колебаний изменится РЅР° тс.  [11]

Р’ диафрагмированном волноводе распространяется замедленная бегущая электромагнитная волна, что позволяет ускорять электроны, сохраняя равенство между фазовой скоростью волны Рё скоростью ускоряемых электронов. Такое ускорение называется ускорением РІ бегущей волне.  [12]

Для получения в волноводе бегущих электромагнитных волн используются различные согласующие устройства.

По своему действию они аналогичны реактивным шлейфам, которые применяются для согласования в фидерных линиях. На рис. 7.

10, Р° показан настроечный РІРёРЅС‚, который располагается параллельно силовым линиям электрического поля Рё представляет СЃРѕР±РѕР№ отрезок разомкнутой линии.  [14]

Механизм взаимодействия электронов СЃ бегущими электромагнитными волнами рассматривается РІРѕ второй части РєСѓСЂСЃР°, посвященной электровакуумным приборам РЎР’Р§.  [15]

Страницы:      1    2    3    4

Источник: https://www.ngpedia.ru/id565866p1.html

Booksm
Добавить комментарий