Атомная физика, опыты Резерфорда

Модели атомов. Опыт Резерфорда. урок. Физика 9 Класс

Атомная физика, опыты Резерфорда

На предыдущем уроке мы обсудили, что в результате радиоактивности образуются различные виды излучений: a-, b-, и g-лучи. Появился инструмент, при помощи которого можно было изучать строение атома.

После того, как стало ясно, что атом тоже имеет сложную структуру, как-то по-особенному устроен, необходимо было исследовать само строение атома, объяснить, как он устроен, из чего состоит. И вот ученые приступили к этому изучению.

Первые идеи о сложном строении были высказаны Томсоном, который в 1897 году открыл электрон. В 1903 году Томсон впервые предложил модель атома. По теории Томсона, атом представлял собой шар, по всему объему которого «размазан» положительный заряд. А внутри, как плавающие элементы, находились электроны.

В целом, по Томсону, атом был электронейтрален, т. е. заряд такого атома был равен 0. Отрицательные заряды электронов компенсировали положительный заряд самого атома. Размер атома составлял приблизительно 10-10м.

Модель Томсона получила название «пудинг с изюмом»: сам «пудинг» – это положительно заряженное «тело» атома, а «изюм» – это электроны (рис. 1).

Рис. 1. Модель атома Томсона («пудинг с изюмом»)

Первый достоверный опыт по определению строения атома удалось провести Э. Резерфорду. На сегодняшний день мы твердо знаем, что атом представляет собой структуру, напоминающую планетную солнечную систему. В центре находится массивное тело, вокруг которого вращаются планеты. Такая модель атома получила название планетарной модели.

Давайте обратимся к схеме опыта Резерфорда (рис. 2) и обсудим результаты, которые привели к созданию планетарной модели.

Рис. 2. Схема опыта Резерфорда

Внутрь свинцового цилиндра с узким отверстием был заложен радий. При помощи диафрагмы создавался узкий пучок a-частиц, которые, пролетая через отверстие диафрагмы, попадали на экран, покрытый специальным составом, при попадании возникала микро-вспышка.

Такое свечение при попадании частиц на экран называется «сцинтиляционная вспышка». Такие вспышки наблюдались на поверхности экрана при помощи микроскопа. В дальнейшем до тех пор, пока в схеме не было золотой пластины, все частицы, которые вылетали из цилиндра, попадали в одну точку.

Когда же внутрь экрана на пути летящих a-частиц была поставлена очень тонкая пластинка из золота, стали наблюдаться совершенно непонятные вещи. Как только была поставлена золотая пластина, начались отклонения a-частиц.

Были замечены частицы, которые отклонялись от своего первоначального прямолинейного движения и уже попадали в совершенно другие точки этого экрана.

Более того, когда экран сделали почти замкнутым, выяснилось, что есть частицы, которые каким-то образом летят в обратную сторону. Они отклоняются под углом 90° и больше. Эти наблюдения были проанализированы Резерфордом, и выяснилась следующая довольно любопытная вещь.

В первую очередь здесь потерпела крах теория Томсона. По теории Томсона, атом представляет собой шар размером 10-10м, в котором положительный заряд размазан и есть электрон. Так вот, электроны – это очень маленькие частицы, они не могут препятствовать a-частицам, летящим с приличной скоростью. Скорость a-частиц в данном случае составляла около 10000 км/с.

Представьте себе ситуацию, когда грузовик столкнется с игрушечным автомобилем. Понятно, что грузовик даже не заметит такого автомобиля.

Это мы можем привести как аналогию столкновения электрона с a-частицей. Значит, необходимо было сделать вывод, что атом устроен иначе, не так, как утверждал Томсон.

И, видимо, в атоме золота есть объект более массивный, чем a-частица, имеющий положительный заряд.

Давайте посмотрим еще одну картину, которая характеризует рассеивание a-частиц на той массивной частице, наличие которой предсказал Резерфорд в атоме (рис. 3).

Рис. 3. Рассеивание альфа-частиц По результатам опытов можно было говорить, что в атоме есть массивный положительно заряженный объект. a-частица, сталкиваясь с этой большой частицей, может отразиться обратно.

Те частицы, которые пролетают рядом, отклоняются на разные углы. Чем дальше a-частица пролетает от этого объекта, тем на меньший угол они отклоняются.

Такое явление получило название «рассеивание a-частиц».

Крупную частицу, которая находится внутри атома, Резерфорд назвал ядром. И даже оценил его размеры. По оценке Резерфорда, размеры ядра составили 10-14–10-15м. Этот объект был очень и очень мал по своим размерам по сравнению с атомом. Атом имеет размер порядка 10-10м. При этом практически вся масса атома была сосредоточена именно в ядре. И именно вокруг ядра обращаются электроны.

Отсюда следует планетарнаямодель Резерфорда, которая утверждает, что атом представляет собой массивное положительно заряженное ядро, вокруг которого по своим орбитам обращаются электроны (рис. 4). В целом атом электронейтрален, т. е. заряд атома равен нулю. Если у атома избыток или недостаток электронов, то его называют ион.

Рис. 4. Планетарная модель атома

Конечно, были и другие теории, представляющие интерес. На сегодняшний день общепринятой, с некоторыми оговорками, о которых поговорим позднее, является именно планетарная модель атома, предложенная Эрнестом Резерфордом.

Список литературы

  1. Бронштейн М.П. Атомы и электроны. «Библиотечка “Квант”». Вып. 1. – М.: Наука, 1980.
  2. Кикоин И.К., Кикоин А.К. Физика: Учебник для 9 класса средней школы. – М.: «Просвещение».
  3. Китайгородский А.И. Физика для всех. Фотоны и ядра. Книга 4. – М.: Наука.
  4. Мякишев Г.Я., Синякова А.З. Физика. Оптика Квантовая физика. 11 класс: учебник для углубленного изучения физики. – М.: Дрофа.
  5. Ньютон И. Математические начала натуральной философии. – М.: Наука, 1989.
  6. Резерфорд Э. Избранные научные труды. Радиоактивность. – М.: Наука.
  7. Резерфорд Э. Избранные научные труды. Строение атома и искусственное превращение элементов. – М.: Наука.
  8. Эйнштейн А., Инфельд Л. Эволюция физики. Развитие идей от первоначальных понятий до теории относительности и квантов. – М.: Наука, 1965.

Источник: https://interneturok.ru/lesson/physics/9-klass/stroenie-atoma-i-atomnogo-yadra-ispolzovanie-energii-atomnyh-yader/modeli-atomov-opyt-rezerforda

Урок 24. строение атома. опыты резерфорда — Физика — 11 класс — Российская электронная школа

Атомная физика, опыты Резерфорда

Физика, 11 класс

Урок №24. Строение атома. Опыты Резерфорда

На уроке рассматриваются: понятия атомное ядро, опыты Резерфорда, планетарная модель строения атома; сравниваются модели атома Томсона и Резерфорда, даны некоторые сведения о фактах, подтверждающих сложное строение атома, о работах учёных по созданию модели строения атома.

Атомное ядро — тело малых размеров, в котором сконцентрирована почти вся масса и весь положительный заряд атома.

Размеры ядра: диаметр порядка 10-12—10-13 см (у разных ядер диаметры различны).

Размер атома: примерно 10-8 см, т. е. от 10 до 100 тысяч раз превышает размеры ядра.

Планетарная модель атома Резерфорда: в целом атом нейтрален, в центре атома расположено положительно заряжённое ядро, в котором сосредоточена почти вся масса атома, электроны движутся по орбитам вокруг ядра, заряд ядра, как и число электронов в атоме, равен порядковому номеру элемента в периодической системе Д.И.Менделеева.

Ядро атома водорода названо протоном и рассматривается как элементарная частица.

Ядро атома водорода имеет положительный заряд, равный по модулю заряду электрона, и массу, примерно в 1836,1 раза больше массы электрона.

Частота излучений атома водорода составляет ряд серий: серия Бальмера, серия Лаймана, серия Пашена и другие, каждая из которых образуется в процессе перехода атома в одно из энергетических состояний.

Обязательная литература по теме урока:

  1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 279 – 283.
  2. Степанова Г.Н. (сост.) Сборник задач по физике для 10-11 классов общеобразовательных учреждений.5-е изд., доп. — М.: «Просвещение», 1999 — С. 221-222
  3. Анциферов Л.И., Физика: электродинамика и квантовая физика. 11кл. Учебник для общеобразовательных учреждений. – М.: Мнемозина, 2001. – С. 270-274.
  4. Рымкевич А.П. Физика. Задачник. 10-11 классы. – М.: Дрофа, 2013. — С. 155 – 156.
  5. Кикоин А. К. За пределы таблицы //Квант. — 1991. — № 1. — С. 38,39,42-44

Основное содержание урока

Долгое время, физика накапливала факты о свойстве вещества для полного представления о строении атома. И только в XIX веке изучение атомического строения вещества существенно сдвинулось с точки покоя.

Большую роль в развитии атомистической теории сыграл выдающийся русский химик Дмитрий Иванович Менделеев, разработавший в 1869 году периодическую систему элементов, в которой впервые был поставлен вопрос о единой природе атомов.

Важным свидетельством сложной структуры атомов явились исследования спектров, излучаемые веществом, которые привели к открытию линейчатых спектров атомов. В начале XIX века в излучении атома водорода были открыты спектральные линии в видимой части спектра.

Идеи электронной структуры атома теоретически и гипотетически формулировались учёными. В 1896 году Хендрик Лоренц создал электронную теорию о том, что электроны являются частью атома. Эту гипотезу в 1897 году подтвердили эксперименты Джозефа Джона Томсона. Им был сформулирован вывод о том, что существуют частицы с наименьшим отрицательным зарядом — электроны и они являются частью атомов.

По мысли Томсона, положительный заряд занимает весь объём атома и распределён он в этом сферическом объёме равномерно. У более сложных атомов в положительно заряжённом шаре есть несколько электронов, так что атом подобен кексу, в котором роль изюма играют электроны. Распространённый термин этой модели — «Пудинг с изюмом» или «Булочка с изюмом».

Таким образом, к началу XX века учёные сделали вывод о том, что атомы материи имеют сложную внутреннюю структуру.

Они являются электрически нейтральными системами, а носителями отрицательного заряда атомов являются лёгкие электроны, масса которых составляет лишь малую долю массы атомов.

Однако модель атома Томсона находилась в полном противоречии с экспериментами по изучению распределения положительных зарядов.

Электрон – наименьшая электроотрицательная заряжённая элементарная частица

Масса покоя электрона me = 9,1·10-31кг;

— отношение заряда электрона к его массе.

Немецкий физик Филипп фон Ленард в 1903 году проводил опыты, в которых пучок быстрых электронов легко проходил через тонкую металлическую фольгу. На основании этого Ленард предположил, что атом состоит из нейтральных частиц или нейтральных дуплетов с совмещённым положительным и отрицательным зарядами, рассредоточенными в атоме, где большая площадь представляет собой пустоту.

В 1904 году японский физик Хентаро Нагаока выдвинул гипотезу о том, что атом состоит из тяжелого положительно заряженного ядра, окруженного кольцами из большого числа электронов, колебания которых и являются причиной испускания атомных спектров, по аналогии с теорией устойчивости колец Сатурна.

Но в физике уже более 200 лет существует главное правило: окончательный выбор между гипотезами может быть сделан только на основе опыта. Эксперименты, проведенные в первый раз Эрнестом Резерфордом, сыграли решающую роль в понимании структуры атома.

Источник: https://resh.edu.ru/subject/lesson/3910/conspect/

Строение атома. Опыты Резерфорда — Класс!ная физика

Атомная физика, опыты Резерфорда

«Физика — 11 класс»

Открытие сложного строения атома — важнейший этап становления современной физики, наложивший отпечаток на все ее дальнейшее развитие.
В процессе создания количественной теории строения атома, позволившей объяснить атомные спектры, были открыты новые законы движения микрочастиц — законы квантовой механики.

Модель Томсона

Первая модель атома была предложена английским физиком Дж. Дж. Томсоном, открывшим электрон. По мысли Томсона, положительный заряд атома занимает весь объем атома и распределен в этом объеме с постоянной плотностью.

Простейший атом (атом водорода) представляет собой положительно заряженный шар радиусом около 10-8 см, внутри которого находится электрон.

У более сложных атомов в положительно заряженном шаре находится несколько электронов, так что атом подобен кексу, в котором роль изюминок выполняют электроны.

Однако модель атома Томсона оказалась в полном противоречии с известными уже к тому времени свойствами атома, главным из которых является устойчивость.

Опыты Резерфорда

Масса электронов в несколько тысяч раз меньше массы атомов.
Так как атом в целом нейтрален, то, следовательно, основная масса атома приходится на его положительно заряженную часть.

Для экспериментального исследования распределения положительного заряда, а значит, и массы внутри атома Эрнест Резерфорд предложил в 1906 г. применить зондирование атома с помощью α-частиц.

Эти частицы возникают при распаде радия и некоторых других элементов. Их масса примерно в 8000 раз больше массы электрона, а положительный заряд равен по модулю удвоенному заряду электрона. Это не что иное, как полностью ионизированные атомы гелия.

Скорость α-частиц очень велика: она составляет 1/15 скорости света.

Этими частицами Резерфорд бомбардировал атомы тяжелых элементов.
Электроны вследствие своей малой массы не могут заметно изменить траекторию а-частицы, подобно тому как камушек в несколько десятков граммов при столкновении с автомобилем не может значительно изменить его скорость.

Рассеяние (изменение направления движения) α-частиц может вызвать только положительно заряженная часть атома.
Таким образом, по рассеянию α-частиц можно определить характер распределения положительного заряда и массы внутри атома.

Схема опытов Резерфорда:

Радиоактивный препарат, например радий, помещался внутри свинцового цилиндра 1, вдоль которого был высверлен узкий канал. Пучок -частиц из канала падал на тонкую фольгу 2 из исследуемого материала (золото, медь и пр.).

После рассеяния α-частицы попадали на полупрозрачный экран 3, покрытый сульфидом цинка. Столкновение каждой частицы с экраном сопровождалось вспышкой света (сцинтилляцией), которую можно было наблюдать в микроскоп 4.

Весь прибор размещался в сосуде, из которого был откачан воздух.

При хорошем вакууме внутри прибора в отсутствие фольги на экране возникал светлый кружок, состоящий из сцинтилляций, вызванных тонким пучком α-частиц.
Но когда на пути пучка помещали фольгу, α-частицы из-за рассеяния распределялись на экране по кружку большей площади.

Модифицируя экспериментальную установку, Резерфорд попытался обнаружить отклонение α-частиц на большие углы. Для этого он окружил фольгу сцинтилляциоными экранами и определил число вспышек на каждом экране.

Совершенно неожиданно оказалось, что небольшое число α-частиц (примерно одна из двух тысяч) отклонилось на углы, большие 90°.

Позднее Резерфорд признался, что, предложив своим ученикам провести эксперимент по наблюдению за рассеянием α-частиц на большие углы, он сам не верил в положительный результат.

В самом деле, предвидеть этот результат на основе модели Томсона было нельзя. При распределении по всему атому положительный заряд не может создать достаточно сильное электрическое поле, способное отбросить α-частицу назад.

Максимальная сила отталкивания может быть определена по закону Кулона:

где
— заряд α-частицы;
q — положительный заряд атома;
R — его радиус;
k — коэффициент пропорциональности.

Напряженность электрического поля равномерно заряженного шара максимальна на поверхности шара и убывает до нуля по мере приближения к центру.
Поэтому чем меньше радиус R, тем больше сила, отталкивающая α-частицы.

Определение размеров атомного ядра

Резерфорд понял, что α-частица могла быть отброшена назад лишь в том случае, если положительный заряд атома и его масса сконцентрированы в очень малой области пространства.
Так Резерфорд пришел к мысли о существовании атомного ядра — тела малых размеров, в котором сконцентрированы почти вся масса и весь положительный заряд атома.

На рисунке показаны траектории α-частиц, пролетающих на различных расстояниях от ядра.

Подсчитывая число α-частиц, рассеянных на различные углы, Резерфорд смог оценить размеры ядра.
Оказалось, что ядро имеет диаметр порядка 10-12—10-13 см (у разных ядер диаметры различны).
Размер же самого атома 10-8 см, т. е.

в 10—100 тысяч раз превышает размеры ядра. Впоследствии удалось определить и заряд ядра.

При условии, что заряд электрона принят за единицу, заряд ядра в точности равен номеру данного химического элемента в периодической системе Д. И.

Менделеева.

Планетарная модель атома

На основе своих опытов Резерфорд создал планетарную модель атома. В центре атома расположено положительно заряженное ядро, в котором сосредоточена почти вся масса атома. В целом атом нейтрален.

Поэтому число внутриатомных электронов, как и заряд ядра, равно порядковому номеру элемента в периодической системе. Ясно, что покоиться электроны внутри атома не могут, так как они упали бы на ядро. Они движутся вокруг ядра, подобно тому как планеты обращаются вокруг Солнца.

Такой характер движения электронов определяется действием кулоновских сил притяжения со стороны ядра.

В атоме водорода вокруг ядра обращается всего лишь один электрон. Ядро атома водорода имеет положительный заряд, равный по модулю заряду электрона, и массу, примерно в 1836,1 раза бо́льшую массы электрона.

Это ядро было названо протоном и стало рассматриваться как элементарная частица.

Размер атома водорода — это радиус орбиты его электрона.

Простая и наглядная планетарная модель атома имеет прямое экспериментальное обоснование. Она кажется совершенно необходимой для объяснения опытов по рассеиванию α-частиц. Но на основе этой модели нельзя объяснить факт существования атома, его устойчивость.

Ведь движение электронов по орбитам происходит с ускорением, причем весьма немалым. Ускоренно движущийся заряд по законам электродинамики Максвелла должен излучать электромагнитные волны с частотой, равной частоте его обращения вокруг ядра. Излучение сопровождается потерей энергии.

Теряя энергию, электроны должны приближаться к ядру, подобно тому как спутник приближается к Земле при торможении в верхних слоях атмосферы.

Как показывают расчеты, основанные на механике Ньютона и электродинамике Максвелла, электрон за ничтожно малое время (порядка 10-8 с) должен упасть на ядро.

Атом должен прекратить свое существование.

В действительности ничего подобного не происходит.

Атомы устойчивы и в невозбужденном состоянии могут существовать неограниченно долго, совершенно не излучая электромагнитные волны.

Не согласующийся с опытом вывод о неизбежной гибели атома вследствие потери энергии на излучение — это результат применения законов классической физики к явлениям, происходящим внутри атома.
Отсюда следует, что к таким явлениям законы классической физики неприменимы.

Резерфорд создал планетарную модель атома: электроны обращаются вокруг ядра, подобно тому как планеты обращаются вокруг Солнца.
Эта модель проста, обоснована экспериментально, но не позволяет объяснить устойчивость атома.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Атомная физика. Физика, учебник для 11 класса — Класс!ная физика

Строение атома. Опыты Резерфорда — Квантовые постулаты Бора. Модель атома водорода по Бору. Трудности теории Бора. Квантовая механика — Лазеры — Краткие итоги главы

Источник: http://class-fizika.ru/11_68.html

6.1. Опыт Резерфорда. Ядерная модель атома

Атомная физика, опыты Резерфорда


Представление об атомах как неделимых мельчайших частицах вещества возникло еще в античные времена, но только в XVIII веке трудами А. Лавуазье, М. В. Ломоносова и других ученых была доказана реальность существования атомов. Но вопрос об их внутреннем устройстве даже не возникал, и атомы по-прежнему считались неделимыми частицами.

В XIX веке изучение атомистического строения вещества существенно продвинулось вперед. В 1833 году при исследовании явления электролиза М. Фарадей установил, что ток в растворе электролита это упорядоченное движение заряженных частиц – ионов. Фарадей определил минимальный заряд иона, который был назван элементарным электрическим зарядом.

Его приближенное значение оказалось равным e = 1,60·10–19 Кл.

На основании исследований Фарадея можно было сделать вывод о существовании внутри атомов электрических зарядов.

Большую роль в развитии атомистической теории сыграл выдающийся русский химик Д. И. Менделеев, разработавший в 1869 году периодическую систему элементов, в которой впервые был поставлен вопрос о единой природе атомов.

Важным свидетельством сложной структуры атомов явились спектроскопические исследования, которые привели к открытию линейчатых спектров атомов. В начале XIX века были открыты дискретные спектральные линии в излучении атомов водорода в видимой части спектра. Впоследствии, в 1885 г. И. Бальмером были установлены математические закономерности, связывающие длины волн этих линий.

В 1896 году А. Беккерель обнаружил явление испускания атомами невидимых проникающих излучений, названное радиоактивностью. В последующие годы явление радиоактивности изучалось многими учеными (М. Склодовская-Кюри, П. Кюри, Э. Резерфорд и др.).

Было обнаружено, что атомы радиоактивных веществ испускают три вида излучений различной физической природы (альфа-, бета- и гамма-лучи).

Альфа-лучи оказались потоком ионов гелия, бета-лучи – потоком электронов, а гамма-лучи – потоком квантов жесткого рентгеновского излучения.

В 1897 году Дж. Томсон открыл электрон и измерил отношение e / m заряда электрона к массе. Опыты Томсона подтвердили вывод о том, что электроны входят в состав атомов.

Таким образом, на основании всех известных к началу XX века экспериментальных фактов можно было сделать вывод о том, что атомы вещества имеют сложное внутреннее строение.

Они представляют собой электронейтральные системы, причем носителями отрицательного заряда атомов являются легкие электроны, масса которых составляет лишь малую долю массы атомов.

Основная часть массы атомов связана с положительным зарядом.

Перед наукой встал вопрос о внутреннем строении атомов.

Первая попытка создания модели атома на основе накопленных экспериментальных данных (1903 г.) принадлежит Дж. Томсону. Он считал, что атом представляет собой электронейтральную систему шарообразной формы радиусом, примерно равным 10–10 м.

Положительный заряд атома равномерно распределен по всему объему шара, а отрицательно заряженные электроны находятся внутри него (рис. 6.1.1). Для объяснения линейчатых спектров испускания атомов Томсон пытался определить расположение электронов в атоме и рассчитать частоты их колебаний около положений равновесия. Однако эти попытки не увенчались успехом.

Через несколько лет в опытах великого английского физика Э. Резерфорда было доказано, что модель Томсона неверна.

Рисунок 6.1.1.Модель атома Дж. Томсона

Первые прямые эксперименты по исследованию внутренней структуры атомов были выполнены Э. Резерфордом и его сотрудниками Э. Марсденом и Х. Гейгером в 1909–1911 годах. Резерфорд предложил применить зондирование атома с помощью α-частиц, которые возникают при радиоактивном распаде радия и некоторых других элементов.

Масса α-частиц приблизительно в 7300 раз больше массы электрона, а положительный заряд равен удвоенному элементарному заряду. В своих опытах Резерфорд использовал α-частицы с кинетической энергией около 5 МэВ (скорость таких частиц очень велика – порядка 107 м/с, но все же значительно меньше скорости света). α-частицы – это полностью ионизированные атомы гелия.

Они были открыты Резерфордом в 1899 году при изучении явления радиоактивности. Этими частицами Резерфорд бомбардировал атомы тяжелых элементов (золото, серебро, медь и др.). Электроны, входящие в состав атомов, вследствие малой массы не могут заметно изменить траекторию α-частицы.

Рассеяние, то есть изменение направления движения α-частиц, может вызвать только тяжелая положительно заряженная часть атома. Схема опыта Резерфорда представлена на рис. 6.1.2.

Рисунок 6.1.2.Схема опыта Резерфорда по рассеянию α-частиц. K – свинцовый контейнер с радиоактивным веществом, Э – экран, покрытый сернистым цинком, Ф – золотая фольга, M – микроскоп

От радиоактивного источника, заключенного в свинцовый контейнер, α-частицы направлялись на тонкую металлическую фольгу. Рассеянные частицы попадали на экран, покрытый слоем кристаллов сульфида цинка, способных светиться под ударами быстрых заряженных частиц. Сцинтилляции (вспышки) на экране наблюдались глазом с помощью микроскопа.

Наблюдения рассеянных α-частиц в опыте Резерфорда можно было проводить под различными углами φ к первоначальному направлению пучка. Было обнаружено, что большинство α-частиц проходит через тонкий слой металла, практически не испытывая отклонения. Однако небольшая часть частиц отклоняется на значительные углы, превышающие 30°.

Очень редкие α-частицы (приблизительно одна на десять тысяч) испытывали отклонение на углы, близкие к 180°.

Этот результат был совершенно неожиданным даже для Резерфорда. Его представления находилbcm в резком противоречии с моделью атома Томсона, согласно которой положительный заряд распределен по всему объему атома. При таком распределении положительный заряд не может создать сильное электрическое поле, способное отбросить α-частицы назад.

Электрическое поле однородного заряженного шара максимально на его поверхности и убывает до нуля по мере приближения к центру шара. Если бы радиус шара, в котором сосредоточен весь положительный заряд атома, уменьшился в n раз, то максимальная сила отталкивания, действующая на α-частицу, по закону Кулона возросла бы в n2 раз.

Следовательно, при достаточно большом значении n α-частицы могли бы испытать рассеяние на большие углы вплоть до 180°. Эти соображения привели Резерфорда к выводу, что атом почти пустой, и весь его положительный заряд сосредоточен в малом объеме. Эту часть атома Резерфорд назвал атомным ядром. Так возникла ядерная модель атома. Рис. 6.1.

3 иллюстрирует рассеяние α-частицы в атоме Томсона и в атоме Резерфорда.

Рисунок 6.1.3.Рассеяние α-частицы в атоме Томсона (a) и в атоме Резерфорда (b)

Таким образом, опыты Резерфорда и его сотрудников привели к выводу, что в центре атома находится плотное положительно заряженное ядро, диаметр которого не превышает 10–14–10–15 м. Это ядро занимает только 10–12 часть полного объема атома, но содержит весь положительный заряд и не менее 99,95 % его массы.

Веществу, составляющему ядро атома, следовало приписать колоссальную плотность порядка ρ ≈ 1015 г/см3. Заряд ядра должен быть равен суммарному заряду всех электронов, входящих в состав атома.

Впоследствии удалось установить, что если заряд электрона принять за единицу, то заряд ядра в точности равен номеру данного элемента в таблице Менделеева.

Радикальные выводы о строении атома, следовавшие из опытов Резерфорда, заставляли многих ученых сомневаться в их справедливости. Не был исключением и сам Резерфорд, опубликовавший результаты своих исследований только в 1911 г. через два года после выполнения первых экспериментов.

Опираясь на классические представления о движении микрочастиц, Резерфорд предложил планетарную модель атома. Согласно этой модели, в центре атома располагается положительно заряженное ядро, в котором сосредоточена почти вся масса атома. Атом в целом нейтрален. Вокруг ядра, подобно планетам, под действием кулоновских сил со стороны ядра вращаются электроны (рис. 6.1.

4). Находиться в состоянии покоя электроны не могут, так как они упали бы на ядро.

Рисунок 6.1.4.Планетарная модель атома Резерфорда. Показаны круговые орбиты четырех электронов

Планетарная модель атома, предложенная Резерфордом, несомненно явилась крупным шагом вперед в развитии знаний о строении атома. Она была совершенно необходимой для объяснения опытов по рассеянию α-частиц, однако оказалась неспособной объяснить сам факт длительного существования атома, т. е. его устойчивость.

По законам классической электродинамики, движущийся с ускорением заряд должен излучать электромагнитные волны, уносящие энергию. За короткое время (порядка 10–8 с) все электроны в атоме Резерфорда должны растратить всю свою энергию и упасть на ядро.

То, что этого не происходит в устойчивых состояниях атома, показывает, что внутренние процессы в атоме не подчиняются классическим законам.




Лучшие школы, лагеря, ВУЗы за рубежом
Математика, Английский язык, Химия, Биология, Физика, География, Астрономия.
А также: online подготовка к ЕГЭ на College.ru, библиотека ЭОРов и обучающие программы на Multiring.ru.

Источник: https://physics.ru/courses/op25part2/content/chapter6/section/paragraph1/theory.html

Атомная физика, опыты Резерфорда

Атомная физика, опыты Резерфорда

Ядерное строение модели атома и опыт ученого Резерфорда

Частицы, открытые Резерфордом

Распад ядер радиоактивных элементов

Еще в античные времена атомы представляли исключительно как неделимые мельчайшие частицы. Однако доказательство реальности существования этих элементов были получены только в XVIII веке.

В следствии того, что никто не задавался вопросом их внутреннего устройства, об атомах было представление как о нечто неделимом. Исследователям атомистического строения физических тел удалось значительно продвинуться вперед в начале XIX столетия.

В 1833 году во время проведения очередного эксперимента по изучению принципов работы электролиза ученым удалось определить, что по своей сути электроток в растворе предмета исследования является ничем иным, как упорядоченным движением ионов, то есть частиц, заряженных положительно. Было установлено также, что приближенное значение минимального заряда иона (который получил название электрического элементарного заряда) равно

Проведенные опыты позволили сделать вывод, что внутри атомов имеется огромное количество электрических зарядов. Д.И. Менделеев, великий русский химик, которым в 1869 году была представлена широкой публике периодическая система элементов (где была обозначена необходимость в единой природе атомов), сыграл неоценимую роль в развитии атомистической идеи.

Спектроскопические учения, которые позволили физикам открыть линейчатые постоянные спектры всех атомов, стали важным доказательством того, что мельчайшие частицы обладают сложной структурой.

Начало XIX века стало временем разработкой дискретных линий в излучении световых волн атомов водорода в видимой части самого спектра.

Установление математических закономерностей, которые позволяют связывать длины волн действующих линий, было достигнуто именно благодаря данным открытиям.

Первооткрывателем электрона в 1897 году после измерения отношения заряда основного элемента к массе, стал Дж. Томсон. Его эксперименты стали подтверждением гипотезы о нахождении электронов в обязательном порядке в составе атомов.

Таким образом, все известные к началу прошлого века экспериментальные подтверждения доказывают факт многогранности атомов веществ и их сложного внутреннего строения. Атомы представляют собой электро-нейтральную систему, где электроны являются носителями отрицательного заряда веществ, масса которых является только малой частью атомов.

Ядерное строение модели атома и опыт ученого Резерфорда

Выдающийся английский физик-теоретик Эрнест Резерфорд, годы жизни 1871-1937, занимался разработкой учения о радиоактивности и строении атома, учредил научную школу, зарубежный член Российской Академии наук, почетный представитель Академии наук СССР.

В ходе научной деятельности ученым было открыто множество закономерностей в физике и доказано неполноценность и ошибочность модели Томсона.

По предложению Резерфорда для зондирования веществ стали использоваться -частицы (чей положительный заряд приравнивается к удвоенному элементарному заряду, и масса которых в 7300 раз превышает вес электронов), формирующиеся при радиоактивном расслоении отдельных химических элементов, в том числе радия.

Резерфорд постоянно использовал в своих опытах -частицы, кинетическая энергия которых 5 МэВ, а скорость около 107 м/с, что достаточно быстро, но все же значительно меньше скорости света. Открытие -частицы, которые представляют собой ионизированные атомы гелия, произошло в процессе исследования радиоактивности.

В своих опытах Резерфорд использовал эти элементы для «атаки» атомов более тяжелых химических элементов. По утверждению ученого электроны, входящие в состав атомов и обладающие малой массой, не в состоянии кардинальным образом изменить траекторию частиц. Для достижения изменения и рассеяния изначального направления -частиц требуется тяжелая «артиллерия».

Многие исследователи подвергли сомнению выводы, сделанные Резерфордом благодаря своим экспериментам, о внутреннем строении атома ввиду их радикальности. Сомневался и сам Резерфорд, работы которого были опубликованы только спустя два года после первых опытов.

Английским физиком была предложена планетарная модель атомов, основанная на классическом представлении о хаотичном движении частиц. Данная концепция предполагает наличие в центре атома положительно заряженного ядра, в котором к тому же сосредоточена вся масса элемента.

Атом в целом обладает нейтральным зарядом, но электроны не могут находиться в постоянном состоянии покоя, это привело бы к падению на ядро.

Частицы, открытые Резерфордом

Резерфорд не был пионером в области изучения нестабильного радиоактивного излучения и поглощения. Эту сферу начали осваивать супруги Кюри и Беккерель.

С момента открытия процессов радиоактивности прошло немного времени, и считалось, что энергия является внешним источником.

Проводя исследования с урановыми лучами и их характеристиками, Резерфорд сделал вывод о неоднородности открытых Беккерелем лучей.

Экспериментом Резерфорда с фольгой было доказано деление радиоактивного луча натри потока:

  • первый поток поглощается полностью алюминиевой фольгой;
  • второй способен проникать через нее;
  • третий представляет собой множество мелких элементов, которые физики назвали альфа- и бета-частицами или лучами.

Микрочастицы, открытые Резерфордом существенно повлияли на процесс развития атомной физики.

Сенсационное открытие позволило доказать, что атомы урана являются источниками энергии. Альфа частицы стали выполнять роль положительно заряженных атомов гелия, бета частицы стали электронами.

Гамма частицы, которые были открыты позже, представляли собой ничто иное, как электромагнитное излучение.

Распад ядер радиоактивных элементов

Открытие, совершенное Резерфордом стало толчком не только для физике как науке, но и для него самого. Он принял решение продолжать изучение радиоактивности в университете канадского города Монреаля.

С исследователем Содди было проведено ряд совместных экспериментов, что позволило определить изменение атома в ходе испускания своих частиц. Словно средневековые алхимики, ученые в ходе очередной научной сенсации успешно трансформировали уран в свинец.

Именно так был открыт радиоактивный распад. Резерфорд и Содди описали данный закон в работе«Радиоактивное превращение».

Физиками-теоретиками была определена прямая зависимость интенсивности распада от прошедшего времени и числа действующих в образце радиоактивных атомов.

Был выявлен факт уменьшения строго в геометрической прогрессии активности и интенсивности с течением времени. Свое определенное время необходимо для каждого вещества. Принцип полураспада был сформулирован ученым на основе скорости протекания распада.

Резерфорд очень талантливо для своего времени проводил эксперименты. Именно опытным путем он решил доказать свои убеждения, усомнившись в теории и модели Томсона. Томсоновский атом представляет собой шарообразное облако, состоящее из электронов, и, где альфа частицы свободно проходили бы сквозь фольгу.

Для своего эксперимента Резерфорд сконструировал специальный прибор, который представлял собой свинцовый ящик с отверстием. В ящике физик поместил радиоактивный материал. Альфа частицы полностью поглощались ящиком во всех направлениях, за исключением направления в сторону отверстия. Таким образом был сформирован направленный поток частиц.

Для отсеивания ненужных частиц, которые внезапно отклонялись от заданного курса, впереди размещались два свинцовых экрана

Английский ученый Эрнест Резерфорд благодаря своей тяге к новым экспериментам пользовался популярностью среди коллег. В результате своих многочисленных опытов, которыми исследователь занимался всю свою жизнь, Резерфорд открыл альфа- и бета-лучи, описал закон полураспада, сформулировал планетарную модель атома.

Энергетический потенциал до Резерфорда считался исключительно внешним источником. Научный мир изменил свое скептическое мнение узнав какие частицы были созданы и открыты Резерфордом. Наука сделал огромный прорыв в развитии физики и химии, благодаря достижениям ученого.

Благодаря ему возникла такая отрасль как ядерная физика.

Источник: https://sciterm.ru/spravochnik/atomnaya-fizika-opiti-rezerforda/

Опыт Резерфорда. Ядерная модель атома

Атомная физика, опыты Резерфорда

Первая попытка создания модели атома была предпринята Дж. Томпсоном. Он полагал, что атом – это электронейтральная система формы шара с радиусом 10-10 м. На рисунке 6.1.1.

показано, как одинаково распределяется положительный заряд атома, причем отрицательные электроны располагаются внутри него.

Чтобы получить объяснение линейчатых спектров атомов, Томпсон тщетно пытался определить расположение электронов в атоме, для расчета частоты их колебаний в положении равновесия. Спустя время Э. Резерфорд доказал, что заданная Томсоном модель была неверна.

Рисунок 6.1.1. Модель Дж. Томпсона.

Электроны в атоме. Опыты Резерфорда и Томпсона

Внутренняя структура атомов была исследована Э. Резарфордом, Э. Марсденом, Х. Гейгером еще в 1909-1911 годах. Было применено зондирование атома α-частицами, возникающими во время радиоактивного распада радия и других элементов. Их масса в 7300 раз больше массы электрона, а положительный заряд равняется удвоенному элементарному заряду.

В опытах Резерфорда были использованы α-частицы, имеющие кинетическую энергию 5 Мэв.

Определение 1

Альфа-частицы – это ионизированные атомы гелия.

Когда было изучено явление радиоактивности, этими частицами Резерфорд уже «бомбардировал» атомы тяжелых металлов. Входящие в них электроны не могут заменить траектории α-частиц, так как имеют малый вес. Рассеяние может быть вызвано тяжелой положительно заряженной частью атома. На рисунке 6.1.2 подробно описан опыт Резерфорда.

Рисунок 6.1.2. Схема опыта Резерфорда по рассеянию α-частиц. K – свинцовый контейнер с радиоактивным веществом, Э – экран, покрытый сернистым цинком, Ф – золотая фольга, M – микроскоп.

Радиоактивный источник, заключенный в свинцовый контейнер, располагается таким образом, что
α-частицы направляются от него к тонкой металлической фольге.

Рассеянные частицы попадают на экран со слоем кристаллов сульфида цинка, светящиеся от их ударов. Сцинтилляции (вспышки) можно наблюдать при помощи микроскопа.

Угол φ к первоначальному направлению пучка не имеет ограничений для данного опыта.

После испытаний было выявлено, что α-частицы, проходящие через тонкий слой металла, не испытывали отклонений. Наблюдались их отклонения и на углы, превышающие 30 градусов и близкие к 180.

Модели атомов Томпсона и Резерфорда

Результат Резерфорда противоречил модели Томпсона, так как положительный заряд не был распределен по всему объему атома. Согласно модели Томпсона, заряд не имеет возможности создавать сильное электрическое поле, которое впоследствии отбросит α-частицы. Такое поле однородно заряженного шара максимально на его поверхности и убывает до нуля к центру.

Определение 2

При уменьшении радиуса шара с положительным зарядом атома максимальная сила отталкивания, действующая на α-частицы, по закону Кулона увеличилась бы в n2 раз.

Если размеры α-частиц достаточно большие, тогда рассеивание может достичь угла в 180 градусов.

Определение 3

Резерфорд пришел к выводу, что пустота атома связана с наличием положительного заряда, сосредоточенного в малом объеме. Данная часть была названа атомным ядром.

Далее возникла ядерная модель атома, показанная на рисунке 6.1.3.

Рисунок 6.1.3. Рассеяние α-частицы в атоме Томсона (a) и в атоме Резерфорда (b).

Резерфорд выяснил, что центр атома имеет положительно заряженное ядро с диаметром 10-14-10-15 м. Оно занимает 10-12 полного объема атома, но содержит весь положительный заряд и около 99,95% его массы.

Вещество, входящее в состав атома, предполагало наличие плотности p≈1015 г/см3, а заряд ядра равнялся суммарному заряду электронов.

Было установлено, что при взятии за 1 значение заряда электрона, заряд ядра равнялся числу из таблицы Менделеева.

Планетарная модель

Опыты Резерфорда приводили к радикальным выводам и сомнениям ученых. Используя классическое представление о движении микрочастиц, он предлагает планетарную модель атома.

Ее смысл заключался в том, что центр атома состоит из положительно заряженного ядра, которое является основной частью массы элементарной частицы. Атом считается нейтральным.

При наличии кулоновских сил вокруг ядра по орбиталям вращаются электроны, как показано на рисунке 6.1.4. Электроны всегда находятся в состоянии движения.

Рисунок 6.1.4. Планетарная модель атома Резерфорда. Показаны круговые орбиты четырех электронов.

Предложенная Резерфордом планетарная модель была толчком в развитии знаний о строении атома. Благодаря ей, опыты по рассеиванию α-частиц смогли объяснить. Но вопрос об его устойчивости остался открытым.

Исходя из закона классической электродинамики, заряд, движущийся с ускорением, излучает электромагнитные волны, забирающие и распределяющие энергию. За время 10-8 с все электроны потратить всю энергию, вследствие чего упасть на ядро.

Так как это не происходит, есть объяснение – внутренние процессы не выполняются согласно классическим законам.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/fizika/atomy-jadra/opyt-rezerforda-jadernaja-model-atoma/

Booksm
Добавить комментарий