Амплитуда гармонических колебаний

Гармонические колебания. Амплитуда, период и частота колебательного движения

Амплитуда гармонических колебаний

В рамках прошлой темы говорилось о новом виде механического движения – колебательном движении.

Механическое колебательное движение —это движение, при котором состояния тела с течением времени повторяются, причем тело проходит через положение устойчивого равновесия поочередно в противоположных направлениях.

Если колебания происходят в системе только под действием внутренних сил, то такие колебания называют свободными.

Колебательной системой называют такую физическую систему, в которой при отклонении от положения равновесия возникают и существуют колебания.

Маятник – это твердое тело, совершающее под действием приложенных сил колебания около неподвижной точки или вокруг оси.

В рамках данной темы будет рассмотрен простейший вид колебательного движения — гармонические колебания.

Гармонические колебания — это колебания, при которых смещение колеблющейся точки от положения равновесия изменяется с течением времени по закону синуса или косинуса.

Смещение от положения равновесия при гармонических колебаниях описывается уравнениями вида:

Эти уравнения называют кинематическим законом гармонического движения.

Покажем, что гармонические колебания действительно подчиняются закону синуса или косинуса. Для этого рассмотрим следующую установку.

Возьмем нитяной маятник, а в качестве груза к нему выберем небольшой массивный сосуд с маленьким отверстием снизу и насыплем в него песок.А под полученную систему положим длинную бумажную ленту.

Если ленту перемещать с постоянной скоростью в направлении, перпендикулярном плоскости колебаний, то на ней останется волнообразная дорожка из песка, каждая точка которой соответствует положению колеблющегося груза в тот момент, когда он проходил над ней. Из опыта видно, что след, который оставляет песок на листе бумаги, есть некая кривая.

Она называется синусоидой. Из курса математики старших классов вы узнаете о том, что аналогичные графики имеют функции типа

Значит, графически зависимость смещения колеблющейся точки от времени изображается синусоидой или косинусоидой.

Через точки, соответствующие положению равновесия маятника, проведена ось времени t, а перпендикулярно ей — ось смещения икс. График дает возможность приблизительно определить координату груза в любой момент времени.

Теперь разберемся с величинами, входящими в уравнение колебательного движения.

Смещение — величина, характеризующая положение колеблющейся точки в некоторый момент времени относительно положения равновесия и измеряемая расстоянием от положения равновесия до положения точки в данный момент времени.

Амплитудаколебаний — максимальное смещение тела от положения равновесия.

Циклическая, или круговаячастота, показывающая, сколько колебаний совершает тело за 2p секунд.

j0 — это начальная фаза колебаний.

Фаза колебаний — это аргумент периодической функции, который при заданной амплитуде колебаний определяет состояние колебательной системы в любой момент времени.

Промежуток времени, в течение которого тело совершает одно полное колебание, называется периодомколебаний.

Период колебаний обычно обозначается буквой Т и в системе СИ измеряется в секундах.

Число колебаний в единицу времени называется частотойколебаний.  Обозначается частота буквой ν. За единицу частоты принято одно колебание в секунду. Эта единица названа в честь немецкого ученого Генриха Герца.

Период колебания и частота колебаний связаны следующей зависимостью:

Т.е. частота — это величина обратная периоду и равная числу полных колебаний, совершаемых за 1 секунду.

Циклическая частота также связана с периодом колебаний или частотой. Эту связь математически можно записать в следующем виде:

Таким образом, любое колебательное движение характеризуется амплитудой, частотой (или периодом) и фазой колебаний.

При совершении телом гармонических колебаний не только его координата, но и такие величины, как сила, ускорение, скорость, тоже изменяются по закону синуса или косинуса.

Это следует из известных вам законов и формул, в которых указанные величины попарно связаны прямо пропорциональной зависимостью, например законом Гука или вторым законом Ньютона.

Из этих формул видно, что сила и ускорение достигают наибольших значений, когда колеблющееся тело находится в крайних положениях, где смещение наиболее велико, и равны нулю, когда тело проходит через положение равновесия.

Что же касается скорости, то она, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия достигает наибольшего значения.

Колебания, практически близкие к гармоническим, совершает тяжелый шарик, подвешенный на легкой и малорастяжимой нити, длина которой значительно больше диаметра шарика. Такую колебательную систему называют математическим маятником.

Математическиймаятник — это материальная точка, подвешенная на невесомой нерастяжимой нити, прикрепленной к подвесу и находящейся в поле силы тяжести.

Также гармонические колебания может совершать груз подвешенный на пружине, совершающий колебания в вертикальной плоскости. Такую колебательную систему называют пружинным маятником — это система, состоящая из материальной точки массой m и пружины.

Основные выводы:

– Гармонические колебания — это колебания, при которых смещение колеблющейся точки от положения равновесия изменяется с течением времени по закону синуса или косинуса.

– Любое колебательное движение характеризуется амплитудой, частотой (или периодом) и фазой колебаний.

– Амплитуда колебаний — максимальное смещение тела от положения равновесия.

– Промежуток времени, в течение которого тело совершает одно полное колебание, называется периодом колебаний.

– Число колебаний в единицу времени называется частотой колебаний.

– Фаза колебаний — это аргумент периодической функции, который при заданной амплитуде колебаний определяет состояние колебательной системы в любой момент времени.

– Математический и пружинный маятники — это простейшие идеализированные колебательные системы, подчиняющиеся закону синуса или косинуса.

– Математический маятник — это материальная точка, подвешенная на невесомой нерастяжимой нити, прикрепленной к подвесу и находящейся в поле силы тяжести.

– Пружинный маятник — это система, состоящая из материальной точки массой m и пружины, которая совершает колебания в вертикальной плоскости.

Источник: https://videouroki.net/video/27-garmonichieskiie-koliebaniia-amplituda-pieriod-i-chastota-koliebatiel-nogho-dvizhieniia.html

Амплитуда гармонических колебаний

Амплитуда гармонических колебаний

В ряду разных механических движений особенным значением обладают колебания. Это движения и процессы, имеющие периодичность во времени. Эти движения мы можем наблюдать:

  • при движении планет;
  • в разных механических машинах;
  • они находятся в основе измерения времени;
  • звуковые явления объясняют механические колебания.

В среде электромагнитных явлений также значительное место заняли электромагнитные колебания. В этих колебаниях заряды, токи, электрические и магнитные поля изменяются согласно периодическим законам.

Данный тип колебаний применяют:

  • в разных технических устройствах;
  • для целей телефонной, телеграфной и радиосвязи;
  • создания технических переменных токов;
  • свет – нечто иное, как электромагнитные колебания.

Определение 1

Колебания, которые происходят под воздействием сил внутри самой колебательной системы, называют собственными. Собственные колебания появляются при нарушении состояния равновесия колебательной системы.

Гармоническими называют колебания, которые описывают при помощи тригонометрических законов синуса и косинуса.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Уравнение собственных электрических колебаний

Допустим, что электрические процессы в контуре, состоящем из:

  • конденсатора (ёмкость $C$);
  • сопротивления ($R$);
  • катушки индуктивности ($L$)

являются квазистационарными. Это означает:

  1. что мгновенная сила тока $I$ одинакова в каждой точке контура;
  2. к мгновенным значениям электрических параметров можно применять законы Кирхгофа.

Изменение заряда описывает в таком контуре дифференциальное уравнение второго порядка с обыкновенными производными и постоянными коэффициентами:

$\frac{d2q}{dt2}+2\alpha \frac{dq}{dt}+\omega_02q=0 (1),$

где $\omega_0=\frac{1}{LC}$ — циклическая (круговая) частота колебаний; $\alpha=\frac{R}{2L}$.

Аналогичные уравнения описывают колебания напряжения и силы тока.

Если колебания описываю при помощи линейных дифференциальных уравнений, то такие колебания являются линейными, соответствующие им колебательные системы, именуют линейными колебательными системами.

Амплитуды заряда, силы тока и напряжения при колебаниях в идеальном электрическом контуре.

Для того чтобы задача описания колебаний стала полностью определенной необходимо задать начальные условия, которых должно быть два, так как мы имеем уравнение второго порядка. Обычно начальными условиями для уравнения (1) являются:

  1. $q=q_0$ при $t=0$;
  2. $\frac{dq}{dt}=0.$

Если сопротивление контура можно считать равным нулю ($R=0$), тогда уравнение колебаний (1) принимает вид:

$\frac{d2q}{dt2}+\omega_02q=0 (2).$

Общим решением уравнения (2) является гармоническое колебание:

$q=A\cos (\omega_0 t+\varphi) (3),$

где $A$ — амплитуда колебаний; $\varphi$ — начальная фаза колебаний.

Амплитуда (как и начальная фаза) определяются начальными условиями колебаний.

Подставим начальные условия в гармоническое колебание (3), получим:

$A\cos \varphi = q_0$, $A\omega_0\sin \varphi = 0 (4).$

Из (4) имеем:

$\varphi=0$; $A=q_0$.

В окончательном виде уравнение гармонического колебания (3) запишем как:

$q=q_0\cos (\omega_0 t) (4).$

Напряжение на конденсаторе в контуре изменяется в соответствии с законом:

$U_C=\frac{q}{C}=U_0\cos \omega_0 t (5),$

где амплитуда напряжения равна первоначальному напряжению на конденсаторе: $U_0=\frac{q_0}{C}.$

Силу тока в контуре найдём как:

$I=-\frac{dq}{dt}=q_0\omega_0 \sin (\omega t)=I_0 \sin (\omega_0 t) (6),$

где $I_0= q_0\omega_0$ — амплитуда силы тока. Сравнивая выражения (4) и (6) мы видим, что заряд и силы тока совершают изменения в соответствии с гармоническими законами, при этом:

  • колебания заряда происходят по закону косинуса;
  • сила тока колеблется по закону синуса.

Поскольку из тригонометрии мы знаем, что:

$\sin (\omega_0 t) = \cos(\omega_0 t-\frac{\pi}{2})$ — это означает, что между колебаниями заряда и силы тока имеется разность фаз $\frac{\pi}{2}$, колебания силы тока отстают по фазе.

Для графического изображения колебаний по горизонтальной оси откладывать время, а по вертикальной заряд (силу тока или напряжение). В таком случае получится периодическая кривая – синусоида или косинусоида. Форму кривой определяют амплитуда колебаний физического параметра и циклическая частота $\omega_0$. Положение кривой зависит от начальной фазы.

Амплитуда гармонических механических колебаниях

Рассмотрим гармонические колебания материальной точки, которая совершает движения вдоль оси $X$:

$x=A\cos (\omega t+\delta)(7),$

где $\delta$ — начальная фаза колебаний; $A$ — амплитуда колебаний – максимальное отклонение колеблющейся материальной точки от положения равновесия. $\omega $ — циклическая частота колебаний.

Скорость колебаний по оси $X$ нашей материальной точки составляет:

$v=\dot{x}=-\omega A\sin (\omega t+\delta) (8),$

где амплитуда скорости равна $v_m=\omega A$.

Найдем вторую производную от уравнения колебаний (7), имеем:

$a=\dot{v}=\ddot{x}=-\omega2A\cos(\omega t+\delta)(8)$.

амплитуда ускорения нашей точки равна $a_m=\omega2A $.

Амплитуда колебаний при наличии затухания

Обратимся к реальному электрическому контуру, который обладает сопротивлением отличным от нуля. В этом случае колебания подчиняются закону (1). Если $\omega_02$ > $\alpha2$, тогда решением дифференциального уравнения (1) служит выражение:

$q=Ae{-\alpha t}\cos (\omega t+\varphi)(9),$

где $A=const$ и $\varphi=const$ — задаются начальными условиями; $\omega = \sqrt{\omega_02-\alpha2}$.

Уравнение (9) условно можно считать гармоническим колебанием с круговой частотой $\omega$ и амплитудой, равной:

$y=Ae{-\alpha t}(10),$

которая не является постоянной, а постоянно уменьшается со временем. Величину $\alpha$ называют коэффициентом затухания.

Источник: https://spravochnick.ru/fizika/garmonicheskie_kolebaniya/amplituda_garmonicheskih_kolebaniy/

Основные формулы по физике — КОЛЕБАНИЯ И ВОЛНЫ

Амплитуда гармонических колебаний

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна — это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Смотрите также основные формулы квантовой физики

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических  колебаний:

  где х — смещение (отклонение) колеблющейся величины от положения равновесия;

  А — амплитуда;

  ω — круговая (циклическая) частота;

  t — время;

  α — начальная фаза;

  (ωt+α ) — фаза.

Связь между периодом и круговой частотой:

Частота:

Связь круговой частоты с частотой:

Периоды собственных колебаний

1) пружинного маятника:

    где k — жесткость пружины;

2) математического маятника:

    где l — длина маятника,

    g — ускорение свободного падения;

3) колебательного контура:

    где L — индуктивность контура,

    С — емкость конденсатора.

1)

2)

3) 

Частота собственных колебаний:

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

    где А1 и А2 — амплитуды составляющих колебаний,

    α1 и α2 — начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

1)

2)

Уравнение затухающих колебаний:

е = 2,71… — основание натуральных логарифмов.

Амплитуда затухающих колебаний:

где А0 — амплитуда в начальный момент времени;

β — коэффициент затухания;

t — время.

Коэффициент затухания:

колеблющегося тела

где r — коэффициент сопротивления среды,

m — масса тела;

колебательного контура

где R — активное сопротивление,

L — индуктивность контура.

Частота затухающих колебаний ω:

Период затухающих колебаний Т:

Логарифмический декремент затухания:

Связь логарифмического декремента χ и коэффициента затухания β:

Амплитуда вынужденных колебаний

где ω — частота вынужденных колебаний,

fо — приведенная амплитуда вынуждающей силы,

при механических колебаниях:

при электромагнитных колебаниях:

Резонансная частота

Резонансная амплитуда

Полная энергия колебаний:

Уравнение плоской волны:

где ξ — смещение точек среды с координатой х в момент времени t;

k — волновое число:

Длина волны:

где v скорость распространения колебаний в среде,

Т — период колебаний.

Связь разности фаз Δφ колебаний двух точек среды с расстоянием Δх между точками среды:

Источник: https://infotables.ru/fizika/94-osnovnye-formuly-po-fizike-kolebaniya-i-volny

Booksm
Добавить комментарий